早教吧作业答案频道 -->数学-->
lim(n/(n^2+1)+n/(n^2+2^2)+……+n/(n^2+n^2))n^2指n的平方
题目详情
lim(n/(n^2+1)+n/(n^2+2^2)+……+n/(n^2+n^2))
n^2 指n的平方
n^2 指n的平方
▼优质解答
答案和解析
lim(n/(n^2+1)+n/(n^2+2^2)+……+n/(n^2+n^2))
=lim1/n*[1/(1+1/n^2)+1/(1+(2/n)^2)+……+1/(1+(n/n)^2)]
根据定积分的定义.
对于∫1/(1+x^2) x∈(0,1)
=lim∑1/n*(1/(1+(i/n)^2)
=lim1/n*[1/(1+1/n^2)+1/(1+(2/n)^2)+……+1/(1+(n/n)^2)]
则lim(n/(n^2+1)+n/(n^2+2^2)+……+n/(n^2+n^2))
=lim1/n*[1/(1+1/n^2)+1/(1+(2/n)^2)+……+1/(1+(n/n)^2)]
=∫1/(1+x^2) x∈(0,1)
=arctanx x∈(0,1)
=π/4
=lim1/n*[1/(1+1/n^2)+1/(1+(2/n)^2)+……+1/(1+(n/n)^2)]
根据定积分的定义.
对于∫1/(1+x^2) x∈(0,1)
=lim∑1/n*(1/(1+(i/n)^2)
=lim1/n*[1/(1+1/n^2)+1/(1+(2/n)^2)+……+1/(1+(n/n)^2)]
则lim(n/(n^2+1)+n/(n^2+2^2)+……+n/(n^2+n^2))
=lim1/n*[1/(1+1/n^2)+1/(1+(2/n)^2)+……+1/(1+(n/n)^2)]
=∫1/(1+x^2) x∈(0,1)
=arctanx x∈(0,1)
=π/4
看了lim(n/(n^2+1)+n...的网友还看了以下:
已知Sn=2Sn-1+1,a1=1,求数列的通项公式前n想和Sn因为Sn-Sn-1=an所以Sn= 2020-04-07 …
lim(n→∞)[【根号(x^2+1)】-n]^2/【立方根(n^6+1)】lim(n→∞)[(x 2020-05-13 …
数列{an}满足a1=1,an+1=2^n+1*an/an+2^n(n∈N+)1)证明:数列{2^ 2020-05-17 …
2011吴江高一新生生活指南的几个题不会、求高人解答分解因式:(m²-n²)x²+m²x+n²x+ 2020-06-11 …
求此极限,n趋于无穷,limln(1+1/n)^2+(1+2/n)^2+(1+n/n)^2liml 2020-06-14 …
已知A=[aij]n*n,其中aij=1(i=1,2,…,n;j=1,2,…,n),求可逆阵P,使 2020-06-18 …
幂级数中x的指数不是n的话收敛半径怎么求?比如:∑(1/2^n)x^(2n-1)和∑2^n/(2幂 2020-07-30 …
(1)已知随即变量X=U+2V和Y=U-2V不相关,下列哪个正确()(A)N(0,1),N(0,1 2020-08-01 …
An=n^2+n.Bn=1/An+1+1/An+2+.+1/A2n,(n+1、2n这些都是角标), 2020-08-01 …
排列数一题为什么n(n-1)(n-2)...*2*1=n(n-1)(n-2)...(n-m+1)(n 2020-12-23 …