早教吧作业答案频道 -->数学-->
在平行四边形abcd中acbd交于点o.过点o作直线efgh.分别交平行四边形的四条边与efh四点连接edgffhh332的条件下.ac等于bdac垂直bd,判断四边形egfh的形状,并说明理由.快点儿除了学霸们赶紧.
题目详情
在平行四边形abcd中acbd交于点o.过点o作直线efgh.分别交平行四边形的四条边与efh四点连接edgffhh332的条件下.ac等于bdac垂直bd,判断四边形egfh的形状,并说明理由.快点儿除了学霸们赶紧.
▼优质解答
答案和解析
在□ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连接EG、GF、FH、HE.
(1)如图①,试判断四边形EGFH的形状,并说明理由;
(2)如图②,当EF⊥GH时,四边形EGFH的形状是?;
(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是?;
(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.
分析:(1)由于平行四边形对角线的交点是它的对称中心,即可得出OE=OF、OG=OH;根据对角线互相平分的四边形是平行四边形即可判断出EGFH的性质;
(2)当EF⊥GH时,平行四边形EGFH的对角线互相垂直平分,故四边形EGFH是菱形;
(3)当AC=BD时,对四边形EGFH的形状不会产生影响,故结论同(2);
(4)当AC=BD且AC⊥BD时,四边形ABCD是正方形,则对角线相等且互相垂直平分;可通过证△BOG≌△COF,得OG=OF,从而证得菱形的对角线相等,根据对角线相等的菱形是正方形即可判断出EGFH的形状.
(1)四边形EGFH是平行四边形;
证明:∵▱ABCD的对角线AC、BD交于点O,
∴点O是▱ABCD的对称中心;
∴EO=FO,GO=HO;
∴四边形EGFH是平行四边形;
(2)菱形;
(3)菱形;
(4)四边形EGFH是正方形;
证明:∵AC=BD,∴▱ABCD是矩形;
又∵AC⊥BD,∴▱ABCD是菱形;
∴▱ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;
∵EF⊥GH,
∴∠GOF=90°;∴∠BOG=∠COF;
∴△BOG≌△COF;
∴OG=OF,∴GH=EF;
由(1)知四边形EGFH是平行四边形,又∵EF⊥GH,EF=GH;
∴四边形EGFH是正方形.
(1)如图①,试判断四边形EGFH的形状,并说明理由;
(2)如图②,当EF⊥GH时,四边形EGFH的形状是?;
(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是?;
(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.
分析:(1)由于平行四边形对角线的交点是它的对称中心,即可得出OE=OF、OG=OH;根据对角线互相平分的四边形是平行四边形即可判断出EGFH的性质;
(2)当EF⊥GH时,平行四边形EGFH的对角线互相垂直平分,故四边形EGFH是菱形;
(3)当AC=BD时,对四边形EGFH的形状不会产生影响,故结论同(2);
(4)当AC=BD且AC⊥BD时,四边形ABCD是正方形,则对角线相等且互相垂直平分;可通过证△BOG≌△COF,得OG=OF,从而证得菱形的对角线相等,根据对角线相等的菱形是正方形即可判断出EGFH的形状.
(1)四边形EGFH是平行四边形;
证明:∵▱ABCD的对角线AC、BD交于点O,
∴点O是▱ABCD的对称中心;
∴EO=FO,GO=HO;
∴四边形EGFH是平行四边形;
(2)菱形;
(3)菱形;
(4)四边形EGFH是正方形;
证明:∵AC=BD,∴▱ABCD是矩形;
又∵AC⊥BD,∴▱ABCD是菱形;
∴▱ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;
∵EF⊥GH,
∴∠GOF=90°;∴∠BOG=∠COF;
∴△BOG≌△COF;
∴OG=OF,∴GH=EF;
由(1)知四边形EGFH是平行四边形,又∵EF⊥GH,EF=GH;
∴四边形EGFH是正方形.
看了在平行四边形abcd中acbd...的网友还看了以下:
1.若 a平方加b平方加c平方减ab减bc减ca等于0 证明a=b=c2.已知 a平方*b平方+a 2020-04-05 …
五题数学题,解题过程要完整,都是完全平方式和平方差,有的是直接计算哦!1.(a+5b)(a-4b) 2020-04-27 …
已知A的平方减B的平方=AB(AB≠0)求下列各式的值 A/B-B/A a的平方分之b的平方加b的 2020-05-15 …
下列命题中,是假命题的是()A.在同一平面内,若a∥b,b∥c,则a∥cB.在同一平面内,若a⊥b 2020-05-17 …
下列关于分红保险的说法中,错误的是( )。A.从理论上理解,“全差分红”最为公平合理B.“三差分红” 2020-05-22 …
若a,b,c为两两不相等的有理数,求证:根号下1/(a-b)的平方+1/(b-c)的平方+1/(c 2020-07-31 …
一道关于平行线的初二数学题下列说法正确的是()A.如果a平行于b,b平行于c,则a、b、c三条直线 2020-08-01 …
我国资源短缺,主要原因有()A.我国各种自然资源贫乏,总量低于世界平均水平B.我国人均资源占有量远远 2020-11-26 …
对“真理面前人人平等”理解正确的是()A.在对同一对象的不同认识中,真理只有一个B.真理对任何人都是 2020-12-10 …
根据购卖力平价理论,当一国利率上升高于高于另一国的利率时,前者的货币会?•根据购卖力平价理论,当一国 2020-12-15 …