早教吧作业答案频道 -->数学-->
△ABC为等腰直角三角形,∠ABC=90°,点D在AB边上(不与点A、B重合),以CD为腰作等腰直角△CDE,∠DCE=90°.(1)如图1,作EF⊥BC于F,求证:△DBC≌△CFE;(2)在图1中,连接AE交BC于M,求ADBM
题目详情
△ABC为等腰直角三角形,∠ABC=90°,点D在AB边上(不与点A、B重合),以CD为腰作等腰直角△CDE,∠DCE=90°.
(1)如图1,作EF⊥BC于F,求证:△DBC≌△CFE;
(2)在图1中,连接AE交BC于M,求
的值;
(3)如图2,过点E作EH⊥CE交CB的延长线于点H,过点D作DG⊥DC,交AC于点G,连接GH,当点D在边AB上运动时,探究线段HE,HG与DG之间的数量关系,并证明你的结伦.

(1)如图1,作EF⊥BC于F,求证:△DBC≌△CFE;
(2)在图1中,连接AE交BC于M,求
AD |
BM |
(3)如图2,过点E作EH⊥CE交CB的延长线于点H,过点D作DG⊥DC,交AC于点G,连接GH,当点D在边AB上运动时,探究线段HE,HG与DG之间的数量关系,并证明你的结伦.

▼优质解答
答案和解析
(1)证明:∵△CDE为等腰直角三角形,∠DCE=90°.
∴CD=CE,∠DCB+∠ECF=90°,
∵EF⊥BC,
∴∠ECF+∠CEF=90°,
∴∠DCB=∠CEF,
在△DBC和△CEF中,
,
∴△DBC≌△CFE;
(2) 如图1,
∵△DBC≌△CFE,
∴BD=CF,BC=EF,
∵△ABC为等腰直角三角形,
∴AB=BC,
∴AB=EF,AD=BF,
在△ABM和△EFM中,
,
∴△ABM≌△EFM,
∴BM=FM,
∴BF=2BM,
∴AD=2BM,
∴
的值为2;
(3) HE=GH+GD,
在EH上截取EQ=DG,如图2,
在△CDG和△CEQ中
,
∴△CDG≌△CEQ,
∴CG=CQ,∠DCG=∠ECQ,
∵∠DCG+∠DCB=45°,
∴∠ECQ+∠DCB=45°,
而∠DCE=90°,
∴∠HCQ=45°,
∴∠HCQ=∠HCG,
在△HCG和△HCQ中,
,
∴△HCG≌△HCQ,
∴HG=HQ,
∴HE=HQ+QE=HG+DG.

∴CD=CE,∠DCB+∠ECF=90°,
∵EF⊥BC,
∴∠ECF+∠CEF=90°,
∴∠DCB=∠CEF,
在△DBC和△CEF中,
|
∴△DBC≌△CFE;
(2) 如图1,
∵△DBC≌△CFE,
∴BD=CF,BC=EF,
∵△ABC为等腰直角三角形,
∴AB=BC,
∴AB=EF,AD=BF,
在△ABM和△EFM中,
|
∴△ABM≌△EFM,
∴BM=FM,
∴BF=2BM,
∴AD=2BM,
∴
AD |
BM |

在EH上截取EQ=DG,如图2,
在△CDG和△CEQ中
|
∴△CDG≌△CEQ,
∴CG=CQ,∠DCG=∠ECQ,
∵∠DCG+∠DCB=45°,
∴∠ECQ+∠DCB=45°,
而∠DCE=90°,
∴∠HCQ=45°,
∴∠HCQ=∠HCG,
在△HCG和△HCQ中,
|
∴△HCG≌△HCQ,
∴HG=HQ,
∴HE=HQ+QE=HG+DG.
看了 △ABC为等腰直角三角形,∠...的网友还看了以下:
mathematica解一元六次方程Solve[{b==f+a,c+d==b,f+g==d,40- 2020-05-16 …
某刑事案件的六个嫌疑分子A,B,C,D,E,F交待了以下材料:某刑事案件的六个嫌疑分子A,B,C, 2020-05-16 …
求三道函数题目.职高难度.1、已知函数f(x)=ax+c,f(1)=1,f(2)=4.求a与c的值 2020-06-26 …
几道高中函数题(求详解)1.已知函数f(X)=ax²+bx+c满足f(1)=f(4),则()A.f 2020-07-05 …
三角形三个点(a,f(a))(b,f(b))(c,f(c))面积=1/2*行列式,行列式的第一排为 2020-07-25 …
假设函数y=f(x)在闭区间[0,1]上连续在开区间(0,1)上二阶可导,过点A(0,f(0))与 2020-07-31 …
假设函数y=f(x)在闭区间[0,1]上连续在开区间(0,1)上二阶可导,过点A(0,f(0))与 2020-08-01 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
已知关系模式R=(A,B,C,D,E,F,G)满足.求R的码已知关系模式R=(A,B,C,D,E,F 2020-11-19 …
若f(x)在(c,d)区间内存在二阶导数,a,b∈(c,d),且f'(a)=0.证明:在(a,b)内 2020-12-28 …