早教吧作业答案频道 -->数学-->
如图所示,已知⊙O的外切△ABC,AB,BC,AC边上的切点为M,D,N,MN与直线DO交于E,连接AE并延长交BC于F,求证:BF=CF.
题目详情
如图所示,已知⊙O的外切△ABC,AB,BC,AC边上的切点为M,D,N,MN与直线DO交于E,连接AE并延长交BC于F,求证:BF=CF.


▼优质解答
答案和解析
证明:过E点作M′N′∥BC,交AB于M′,交AC于N′,连结OM,ON,OM′,ON′.
∵⊙O是△ABC的内切圆,且D,M,N为切点,
∴∠OMN′=∠ODB=90°.
∵∠OEN′=∠ODB,
∴∠OMN′=∠OEN′,
∴O,E,M,N′四点共圆,所以
∠OME=∠ON′E.
同理,O,E,M′,N四点共圆,
∴∠ONE=∠OM′E.
∵OM=ON,
∴∠OME=∠ONE,∠ON′E=∠OM′E,
OM′=ON′,EM′=EN′.
∵M′N′∥BC,
∴BF=FC.

∵⊙O是△ABC的内切圆,且D,M,N为切点,
∴∠OMN′=∠ODB=90°.
∵∠OEN′=∠ODB,
∴∠OMN′=∠OEN′,
∴O,E,M,N′四点共圆,所以
∠OME=∠ON′E.
同理,O,E,M′,N四点共圆,
∴∠ONE=∠OM′E.
∵OM=ON,
∴∠OME=∠ONE,∠ON′E=∠OM′E,
OM′=ON′,EM′=EN′.
∵M′N′∥BC,
∴BF=FC.
看了 如图所示,已知⊙O的外切△A...的网友还看了以下:
已知△BCE、△DCF分别是以平行四边形ABCD的邻边BC、CD为边向外所作的等边三角形求证:△A 2020-05-17 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC 2020-06-06 …
(2013•白下区二模)D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点. 2020-06-15 …
关于电阻决定式中L与S的含义一个边长为a,横截面积为S,电阻率为ρ的正方形导体ABCD,AB、BC 2020-07-29 …
设f(x)=ax2+bx+c(a,b,c∈R),e为自然对数的底数.若f′(x)lnx>f(x)x 2020-08-02 …
如图,D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC平面上 2020-08-03 …
如图,D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点,点O是在△ABC的 2020-08-03 …
D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点,O是△ABC内任意一点, 2020-08-03 …
(2005•常州)如图所示,为使滑动变阻器的滑片P向右移动时,通电螺线管对条形磁铁的斥力变大,则电源 2020-11-12 …