早教吧作业答案频道 -->数学-->
如图,四边形ABCD内接于⊙O,AC平分∠BAD交BD于点E,⊙O的半径为4,∠BAD=60°,∠BCA=15°,则AE=.
题目详情
如图,四边形ABCD内接于⊙O,AC平分∠BAD交BD于点E,⊙O的半径为4,∠BAD=60°,∠BCA=15°,则AE= ___ .


▼优质解答
答案和解析
连接OA、OC、OB,OC交于BD点F,
∵AC平分∠BAD交BD于点E,∠BAD=60°,
∴∠BAC=∠CAD=30°,
由圆周角定理知,弧BC=弧CD,∠BOC=60°,
∴BC=CD,∠CBD=∠BDC=30°,
又∵OB=OC,∴△OBC是等边三角形,∠BOC=60°,
∵∠ACB=15°,
∴∠AOB=30°,∠ADF=15°,∠AOC=90°
∵OA=OC=4,
∴△AOC是等腰直角三角形,
∴AC=
=4
,
∵点C是弧BD的中点,
∴OC⊥BD,
∵∠CBD=30°,∠CBO=60°
∴∠OBF=∠CBF=30°,
∴△BFO≌△BFC,
∴OF=CF,即点F是OC的中点,
∵AO∥BD,
∴△CEF∽△CAO,且相似比为CF:CO=1:2,
∴CE:CA=1:2,
则AE=
AC=2
.

∵AC平分∠BAD交BD于点E,∠BAD=60°,
∴∠BAC=∠CAD=30°,
由圆周角定理知,弧BC=弧CD,∠BOC=60°,
∴BC=CD,∠CBD=∠BDC=30°,
又∵OB=OC,∴△OBC是等边三角形,∠BOC=60°,
∵∠ACB=15°,
∴∠AOB=30°,∠ADF=15°,∠AOC=90°
∵OA=OC=4,
∴△AOC是等腰直角三角形,
∴AC=
42+42 |
2 |
∵点C是弧BD的中点,
∴OC⊥BD,
∵∠CBD=30°,∠CBO=60°
∴∠OBF=∠CBF=30°,
∴△BFO≌△BFC,
∴OF=CF,即点F是OC的中点,
∵AO∥BD,
∴△CEF∽△CAO,且相似比为CF:CO=1:2,
∴CE:CA=1:2,
则AE=
1 |
2 |
2 |
看了 如图,四边形ABCD内接于⊙...的网友还看了以下:
数学题: 已知抛物线y=x²+bx+c交x轴于A(1,0),B(3,0), 交y轴于点C,其顶点为 2020-05-13 …
目前,电子商务总交易量中80%是由()实现的。A.B to C交易B.B to B交易C.C to 2020-05-26 …
79、停用备用电源自投装置时应().(A)先停交流,后停直流;(B)先停直流,后停交流;(C)交直 2020-06-08 …
设集合A、B、C.我们知道集合满足分配律:(A交B)并C=(A并C)交(B并C)(A并B)交C=( 2020-06-23 …
(1999•西安)如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB= 2020-07-20 …
若A并B=A并C,则一定有A.B=CB.A交B=A交CC.A交B的补集=A并C的补集D.B交A的补 2020-07-30 …
高一数学集合证明:1.A并(A交B)=A2.A交(A并B)=A3.C交(A-B)=(A交C)-(B 2020-08-02 …
抛物线y=ax2+bx+c交x轴于A、B两点,交y于点C,已知抛物线的对称轴为x=1B(3,0),C 2020-11-27 …
数学题在线解答已知集合A={三角形},B={等腰三角形},C={等边三角形},D={直角三角形},那 2020-11-27 …
(易错题)如图,△ABC和△A′B′C′中,AC=A′C′=3,BC=B′C′=4,AB=A′B′= 2020-12-12 …