早教吧作业答案频道 -->其他-->
正方形ABCD是圆O的内接正方形,延长BA至E使AE等于AB连接ED一;证明:直线ED是圆O的切线.二;连接EO交AD于F求证EF=2FO
题目详情
正方形ABCD是圆O的内接正方形,延长BA至E 使AE等于AB 连接ED
一;证明:直线ED是圆O的切线.
二;连接EO 交AD于F 求证EF=2FO
一;证明:直线ED是圆O的切线.
二;连接EO 交AD于F 求证EF=2FO
▼优质解答
答案和解析
证明:连接AO,BD,可知BD经过点O,且O为BD的中点
而三角形BAD为等腰直角三角形
故三角形AOD也为等腰直角三角形,即AO⊥OD
又A为BE的中点
故OA//DE
故DE⊥OD
即DE为圆O的切线
2.O,A是中点
故AO//DE,且DE=2AO
故三角形AOF∽三角形DEF
故EF/FO=DE/AO=2
即EF=2FO
而三角形BAD为等腰直角三角形
故三角形AOD也为等腰直角三角形,即AO⊥OD
又A为BE的中点
故OA//DE
故DE⊥OD
即DE为圆O的切线
2.O,A是中点
故AO//DE,且DE=2AO
故三角形AOF∽三角形DEF
故EF/FO=DE/AO=2
即EF=2FO
看了 正方形ABCD是圆O的内接正...的网友还看了以下:
(1)如图①∵∠B+∠D+∠1=180°又∵∠1=∠A+∠2∠2=∠C+∠E∴∠A+∠C+∠E+∠ 2020-06-13 …
一到证明题求解.利用常用永真蕴含公式证明(A→(B→C))∧((C∧D)→E)∧(┓F→(D→┓E 2020-06-17 …
已知:如图,在△ABC中,AB=AC,点E、D、F分别在AB、BC、AC上,切∠EDF=∠B 求证 2020-06-27 …
如图,在三角形ABC中,角C等于2角B,D是BC上的一点,且AD垂直AB,点E是BD的中点,连接E 2020-06-27 …
SQL计算列的问题我要在数据库中加入计算列,比如有a,b,c三列,计算列D=(a+b+c)/3,然 2020-07-10 …
如何求证C,D,E,F四点共圆.以知:圆1与圆2相交与点A,B,点P在BA的延长线上,割线PCD交 2020-07-31 …
1.△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D.求证:DE=DB.2.点I是△ 2020-08-02 …
1.化简(┐S∧(┐T∧┐R))∨(T∧R)∨(S∧R)2.用CP规则证明:E→(D∧C),(E→┐ 2020-10-31 …
已知向量a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则(a,e皆为向量)A.a⊥ 2020-11-02 …
亲,问个问题好么,这个题是作业!虽然可能很简单.1.△ABC中,E是内心,∠A的平分线和△ABC的外 2020-11-03 …