早教吧作业答案频道 -->数学-->
如图,△ABC中,AB=AC,AD、AE分别是∠BAC及其外角∠CAF的平分线,CE⊥AE(1)求证:AB=DE;(2)若S△ABC=48,AD=8,P为线段CE上的动点,设x为点P到直线AC的距离,y为点P到直线AB的距离,求y与x的
题目详情
如图,△ABC中,AB=AC,AD、AE分别是∠BAC及其外角∠CAF的平分线,CE⊥AE

(1)求证:AB=DE;
(2)若S△ABC=48,AD=8,P为线段CE上的动点,设x为点P到直线AC的距离,y为点P到直线AB的距离,求y与x的函数关系式,并写出自变量x的取值范围.

(1)求证:AB=DE;
(2)若S△ABC=48,AD=8,P为线段CE上的动点,设x为点P到直线AC的距离,y为点P到直线AB的距离,求y与x的函数关系式,并写出自变量x的取值范围.
▼优质解答
答案和解析
(1)证明:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,
∵AD是∠BAC的平分线,AE是∠CAF的外角平分线,
∴∠DAC+∠CAE=90°即∠DAE=90°,
又CE⊥AE,
∴四边形ADCE为矩形;
∴AC=DE,
∵AB=AC,
∴AB=DE,

(2)∵S△ABC=48,AD=8,
∴BC=12,
∵AD⊥BC,AB=AC,
∴DC=6,
∴AC=10,
∵x为点P到直线AC的距离,y为点P到直线AB的距离,
∴当P与C点重合,
∴PM•AB=AD•BC,
∴10PM=8×12,
∴PM=9.6,
∴x=0,y=9.6,
∴x+y=9.6,
∴y=9.6-x(0≤x≤4.8).
当P与E点重合,
过点P作PS⊥BA,PN⊥AC,
∵PN•AC=AP•PC,
∴10PN=8×6,
∴PN=4.8,
∵AE是外角∠CAF的平分线,
∴PS=PN,
∴x=4.8,y=4.8,
∴x+y=9.6,
∴y=9.6-x(0≤x≤4.8).
综上所述,可以得出P点在线段CE上移动时,
y与x的函数关系式为:y=9.6-x,自变量x的取值范围为:0≤x≤4.8.
∵AD是∠BAC的平分线,AE是∠CAF的外角平分线,
∴∠DAC+∠CAE=90°即∠DAE=90°,
又CE⊥AE,
∴四边形ADCE为矩形;
∴AC=DE,
∵AB=AC,
∴AB=DE,

(2)∵S△ABC=48,AD=8,
∴BC=12,
∵AD⊥BC,AB=AC,
∴DC=6,
∴AC=10,
∵x为点P到直线AC的距离,y为点P到直线AB的距离,
∴当P与C点重合,
∴PM•AB=AD•BC,
∴10PM=8×12,
∴PM=9.6,
∴x=0,y=9.6,
∴x+y=9.6,
∴y=9.6-x(0≤x≤4.8).
当P与E点重合,
过点P作PS⊥BA,PN⊥AC,
∵PN•AC=AP•PC,
∴10PN=8×6,
∴PN=4.8,
∵AE是外角∠CAF的平分线,
∴PS=PN,
∴x=4.8,y=4.8,

∴x+y=9.6,
∴y=9.6-x(0≤x≤4.8).
综上所述,可以得出P点在线段CE上移动时,
y与x的函数关系式为:y=9.6-x,自变量x的取值范围为:0≤x≤4.8.
看了 如图,△ABC中,AB=AC...的网友还看了以下:
1.如果f(x)=(1/1+x^2)+x^2*∫^∧1∨0f(x)dx,求∫∧1∨0f(x)dx的 2020-04-13 …
根据质量分数推测有机物分子式已知化合物A中各元素的质量分数分别为C 37.5%,H 4.2%,0 2020-05-16 …
2.已知两个正整数的和与积相等,求这两个数不妨设这两个正整数为a、b,且a≤b,由题意得:ab=a 2020-05-16 …
已知定义在R上的函数f(x)=2*+A/2*(a为常数)1.若函数是R上的奇函数.1.求a2,判断 2020-05-17 …
a,b互为相反数,c,d互为倒数,x的绝对值是12,y不能作除数,求2(a+b)2009-2(cd 2020-05-19 …
已知平面内两点P,Q的坐标分别为(-2,4),(2,1),求→PQ的单位向量→a0;若R(6,-2 2020-05-23 …
设函数y=x²-ax+2(a为常数),x∈-1,1(1)求函数的最小值f(a)(2)求函数的最大值 2020-06-03 …
2.已知两个正整数的和与积相等,求这两个数不妨设这两个正整数为a、b,且a≤b,由题意得:ab=a 2020-06-23 …
5月12日的问答中一题:锐角三角形ABC中,角A、B、C的对边分别为a、b、c,且b=2asinB 2020-08-02 …
f(x)=e^x/(1+ax^2),a为正实数f(x)为R上的单调函数,求a的取值范围.我看了f( 2020-08-02 …