早教吧作业答案频道 -->数学-->
an=n^(n+1),bn=(n+1)^n比较大小并证明用数学归纳法这样证明是对的吗?当n=1时,1^2(k+1)^k,即k^(k+1)/(k+1)^k>1k*(k/(k+1))^k>1当n=k+1时,考察(k+1)^(k+2)>(k+2)^(k+1)是否成立.∵k^2+2k+1>k^2+2k∴(k+1)^2>k(k+2)(k+1)^2/(k+2)>k(k+
题目详情
an=n^(n+1),bn=(n+1)^n 比较大小并证明 用数学归纳法
这样证明是对的吗?
当n=1时,1^2(k+1)^k,即
k^(k+1)/(k+1)^k>1
k*(k/(k+1))^k>1
当n=k+1时,考察(k+1)^(k+2)>(k+2)^(k+1)是否成立.
∵k^2+2k+1>k^2+2k
∴(k+1)^2>k(k+2)
(k+1)^2/(k+2)>k
(k+1)/(k+2)>k/(k+1)
((k+1)/(k+2))^k>(k/(k+1))^k
k*((k+1)/(k+2))^k>k*(k/(k+1))^k>1
(k+1)^2/(k+2)*((k+1)/(k+2))^k>k*((k+1)/(k+2))^k>1
(k+1)^(k+2)/(k+2)^(k+1)>1
(k+1)^(k+2)>(k+2)^(k+1)
根据数学归纳法,当n>=3时,n^(n+1)>(n+1)^n成立.
这样证明是对的吗?
当n=1时,1^2(k+1)^k,即
k^(k+1)/(k+1)^k>1
k*(k/(k+1))^k>1
当n=k+1时,考察(k+1)^(k+2)>(k+2)^(k+1)是否成立.
∵k^2+2k+1>k^2+2k
∴(k+1)^2>k(k+2)
(k+1)^2/(k+2)>k
(k+1)/(k+2)>k/(k+1)
((k+1)/(k+2))^k>(k/(k+1))^k
k*((k+1)/(k+2))^k>k*(k/(k+1))^k>1
(k+1)^2/(k+2)*((k+1)/(k+2))^k>k*((k+1)/(k+2))^k>1
(k+1)^(k+2)/(k+2)^(k+1)>1
(k+1)^(k+2)>(k+2)^(k+1)
根据数学归纳法,当n>=3时,n^(n+1)>(n+1)^n成立.
▼优质解答
答案和解析
首先要给出一个观点,比如:an>bn
然后再证明你的假定观点是否成立,或者成立的条件就可以了!
还有数学归纳法是:当n=1是····,假定n=k成立,则当n=k+1时,根据n=k成立的条件,判断命题是否成立!
然后再证明你的假定观点是否成立,或者成立的条件就可以了!
还有数学归纳法是:当n=1是····,假定n=k成立,则当n=k+1时,根据n=k成立的条件,判断命题是否成立!
看了 an=n^(n+1),bn=...的网友还看了以下:
高中的知识忘了,当k>0,1/(k+1)+1/(k+1)^2+...1/(k+1)^n求和当n趋向 2020-04-26 …
1/2{1/2[1/2(1/2y-3)-3]-3}=17x-1/0.024=1-0.2x/0.08 2020-04-27 …
若关于x的不等式(2-k)x>1/k的解集为(-1,+∞),则实数k的值为A k=1±根号二 B 2020-05-16 …
(1)1/1*2+1/2*3+.+1/2009*2010(2)1/2*4+1/4*6+.+1/20 2020-05-17 …
C(n,k)=C(n-1,k-1)+C(n-1,k)为什么这个等式成立?请大神帮我解释下C(n,k 2020-06-12 …
(1/2+1/3+1/4+...1/2013)X(1+1/2+1/3+1/4+...1/2012) 2020-07-14 …
k=1是函数y=(coskx)^2-(sinkx)^2的最小正周期为的什么条件请解释一下吧他说充要 2020-08-02 …
an=n^(n+1),bn=(n+1)^n比较大小并证明用数学归纳法这样证明是对的吗?当n=1时, 2020-08-03 …
设R^3中的一组基ξ1=(1,-2,1)T,ξ2=(0,1,1)T,ξ3=(3,2,1)T,向量α在 2020-11-02 …
初一一道数学找规律的题急用1.将1,-1/2,1/3,-1/4,1/5,-1/6,.按一定的规律排列 2020-11-03 …