早教吧作业答案频道 -->数学-->
设函数f(x)=x|x-a|,若对于任意的x1,x2∈[2,+∞),x1≠x2,不等式f(x1)−f(x2)x1−x2>0恒成立,则实数a的取值范围是.
题目详情
设函数f(x)=x|x-a|,若对于任意的x1,x2∈[2,+∞),x1≠x2,不等式
>0恒成立,则实数a的取值范围是______.
f(x1)−f(x2) |
x1−x2 |
▼优质解答
答案和解析
由题意知f(x)=x|x-a|在[2,+∞)上单调递增.
(1)当a≤2时,
若x∈[2,+∞),则f(x)=x(x-a)=x2-ax,其对称轴为x=
,
此时
<2,所以f(x)在[2,+∞)上是递增的;
(2)当a>2时,
①若x∈[a,+∞),则f(x)=x(x-a)=x2-ax,其对称轴为x=
,所以f(x)在[a,+∞)上是递增的;
②若x∈[2,a),则f(x)=x(a-x)=-x2+ax,其对称轴为x=
,所以f(x)在[
,a)上是递减的,因此f(x)
在[2,a)上必有递减区间.
综上可知a≤2.
故答案为(-∞,2].
(1)当a≤2时,
若x∈[2,+∞),则f(x)=x(x-a)=x2-ax,其对称轴为x=
a |
2 |
此时
a |
2 |
(2)当a>2时,
①若x∈[a,+∞),则f(x)=x(x-a)=x2-ax,其对称轴为x=
a |
2 |
②若x∈[2,a),则f(x)=x(a-x)=-x2+ax,其对称轴为x=
a |
2 |
a |
2 |
在[2,a)上必有递减区间.
综上可知a≤2.
故答案为(-∞,2].
看了 设函数f(x)=x|x-a|...的网友还看了以下:
f(x)=x^2+ax+b(1)函数f(x)的图像过(1,1),f(-1)=f(3),求g(x)= 2020-05-16 …
已知函数f(x)=x的平方加x-2设当0小于x小于二分之一时,不等式f(x)+3小于2x+a恒成立 2020-05-16 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(I)若f(2)=3 2020-06-16 …
已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个命题①若a>0,则不等 2020-07-21 …
f(a)+f(b)=2f[(a+b)/2]*f[(a-b)/2]的奇偶性已知函数f(x)对于任意实 2020-08-01 …
若函数f(x)不等于0,且f(x)满足下列三个条件:1.对任意实数a、b,均有f(a-b)=f(a 2020-08-03 …
已知函数fx是定义在实数集R上的不恒为零的偶函数,对任意实数x有xf(x+1)=(1+x)f(x), 2020-11-18 …
设f(x)是定义在(负无穷大,正无穷大)上奇函数,且是递减函数.(1)若不等式f(1-ax)+f(a 2020-12-08 …