早教吧作业答案频道 -->其他-->
右图是一个直三棱柱(以A1B1C1为底面),被一平面所截得的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=900,AA1=4,BB1=2,CC1=3(I)设点O是AB的中点,证明:OC∥平面A1B1C1(II)求AB与平面AA1CC1所
题目详情
右图是一个直三棱柱(以A1B1C1为底面),被一平面所截得的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=900,AA1=4,BB1=2,CC1=3(I)设点O是AB的中点,证明:OC∥平面A1B1C1
(II)求AB与平面AA1CC1所成角的大小.
▼优质解答
答案和解析
(Ⅰ)证明:作OD∥AA1交A1B1于D,连C1D.
则OD∥AA1交A1B1于D,连C1D因为O是AB的中点,
所以OD=
(AA1+BB1)=3=CC1.
则ODC1C是平行四边形,因此有OC∥C1D,C1D⊂平面C1B1A1,且OC⊄平面C1B1A1
则OC∥面A1B1C1. ….(7分)
(Ⅱ)如图,过B作截面BA2C2∥面A1B1C1,分别交AA1,CC1于A2,C2,
作BH⊥A2C2于H,
因为平面A2BC2⊥平面AA1C1C,则BH⊥面AA1C1C.
连接AH,则∠BAH就是AB与面AA1C1C所成的角.
因为BH=
,AB=
,所以sin∠BAH=
=
.AB与面AA1C1C所成的角为∠BAH=arcsin
.….(14分)
解法二:
(Ⅰ)证明:如图,以B1为原点建立空间直角坐标系,则A(0,1,4),B(0,0,2),C(1,0,3),因为O是AB的中点,所以O(0,
,3),
=(1,−
,0),
易知,
(Ⅰ)证明:作OD∥AA1交A1B1于D,连C1D.则OD∥AA1交A1B1于D,连C1D因为O是AB的中点,
所以OD=
| 1 |
| 2 |
则ODC1C是平行四边形,因此有OC∥C1D,C1D⊂平面C1B1A1,且OC⊄平面C1B1A1
则OC∥面A1B1C1. ….(7分)
(Ⅱ)如图,过B作截面BA2C2∥面A1B1C1,分别交AA1,CC1于A2,C2,
作BH⊥A2C2于H,
因为平面A2BC2⊥平面AA1C1C,则BH⊥面AA1C1C.
连接AH,则∠BAH就是AB与面AA1C1C所成的角.
因为BH=
| ||
| 2 |
| 5 |
| BH |
| AB |
| ||
| 10 |
| ||
| 10 |
解法二:
(Ⅰ)证明:如图,以B1为原点建立空间直角坐标系,则A(0,1,4),B(0,0,2),C(1,0,3),因为O是AB的中点,所以O(0,
| 1 |
| 2 |
| OC |
| 1 |
| 2 |

易知,
作业帮用户
2017-09-18
![]() |
看了 右图是一个直三棱柱(以A1B...的网友还看了以下:
a、b、c是不等于0的实数,且1\a+1\b=1,1\b+1\c=2,1\c+1\a=5求a2b2c 2020-03-30 …
已知a+b+c=1,求证:(a/1+b+c)+(b/1+a+c)+(c/1+a+b)≥3/5已知a 2020-04-05 …
已知abc均为正数学且满足3^a=4^b=6^c则A.1/c=1/a+1/bB.1/c=2/a+2 2020-06-03 …
设a.b.c满足1/a+1/b+1/c=1/(a+b+c),求证:当n为奇数时,1/(an+bn+ 2020-06-12 …
有理数a、b在数轴上的对应点位置如图所示(1)用“<”连接0、-a、-b、-1(2)化简:|a|- 2020-07-20 …
设a,b,c都是正数,且3^a=4^b=6^c,那么设a、b、c都是正数,且3^a=4^b=6^c 2020-07-20 …
设a,b,c都是正数且a+b+c=1,求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b) 2020-07-25 …
1.两个正方形的边长之和为36CM,面积之差为72CM2求这两个正方形边长2.除式式X+2商是() 2020-07-30 …
(1)已知a+b=-c,则a(1/a+1/b)+b(1/a+1/c)+c(1/a+1/b)的值是多少 2020-10-31 …
看看是什么三角形以知三角形ABC的三边分别为abc,且满足1/a-1/b+1/c=1/a-b+c试判 2020-12-25 …
扫描下载二维码