早教吧作业答案频道 -->其他-->
两道平面几何题.1、已知锐角△ABC为不等边三角形,AE为其外接圆直径,AD是BC边上的高,D为垂足,AD的延长线交△ABC的外接圆于F,过F点作直线AB、AC的垂线,垂足分别为P和Q.记∠ABC=β,∠ACB=γ.求证:S
题目详情
两道平面几何题.
1、已知锐角△ABC为不等边三角形,AE为其外接圆直径,AD是BC边上的高,D为垂足,AD的延长线交△ABC的外接圆于F,过F点作直线AB、AC的垂线,垂足分别为P和Q.记∠ABC=β,∠ACB=γ.
求证:S△EPQ:S△ABC=cotβcotγ+[sin(β-γ)]^2
2、已知⊙O与△ABC的边AB、AC分别相切于P和Q,与△ABC外接圆相切于D,M是PQ的中点.
求证:∠POQ=2∠MDC
一题50分,回答后自会加分.
第一题我已得出一个条件:AE⊥PQ
那第二题呢?
1、已知锐角△ABC为不等边三角形,AE为其外接圆直径,AD是BC边上的高,D为垂足,AD的延长线交△ABC的外接圆于F,过F点作直线AB、AC的垂线,垂足分别为P和Q.记∠ABC=β,∠ACB=γ.
求证:S△EPQ:S△ABC=cotβcotγ+[sin(β-γ)]^2
2、已知⊙O与△ABC的边AB、AC分别相切于P和Q,与△ABC外接圆相切于D,M是PQ的中点.
求证:∠POQ=2∠MDC
一题50分,回答后自会加分.
第一题我已得出一个条件:AE⊥PQ
那第二题呢?
▼优质解答
答案和解析
1.
设△ABC外接圆半径为R
S△ABC=2R*RsinAsinBsinC = 2R*Rsinβsinγsin(β+γ)
∠BAF = ∠CAE = 90 -β
∠EAF= β-γ
AF = 2R*cos(β-γ)
AP = AF*cos(90—β) = AF*sin β =2R cos(β-γ) sin β
AQ = AEsin β =2R cos(β-γ)sin γ
利用你已经证明的结果AE⊥PQ,设AE和PQ相交于G
PG=APsin γ= 2R cos(β-γ)sin βcosγ
QG= 2R cos(β-γ)sin γcosβ
PQ = 2R cos(β-γ)( sin βcosγ +sin γcosβ) = 2Rcos(β-γ)sin (β+γ)
( 如果你对三角公式不熟悉,PQ的值也可以通过△PQF∽△BCE,或是余弦定理得到)
AG = AQcos(90- β) = 2R cos(β-γ) sin βsin γ
EG = 2R-AG = 2R(1- cos(β-γ) sin βsin γ)
S△PQE = AG*PQ/2=2R*R(1- cos(β-γ) sin βsin γ) *cos(β-γ)sin (β+γ)
S△PQE/ S△ABC= [(1- cos(β-γ) sin βsin γ) *cos(β-γ)sin (β+γ) ]/ [sinβsinγsin(β+γ) ]
=1/sinβsinγ - cos(β-γ) *cos(β-γ)
= cotβcotγ+[sin(β-γ)]^2
2.
由已知条件,O,M,A 三线共点
OM*MA =OP*OP=OD*OD
∆ODM ∽∆OAD
∠ODM = ∠OAD (这是证明此题最关键的一步)
设△ABC外接圆圆心为O’,O’,O,D三线共点
∠O’DA= ∠O’AD
∠O’AM = ∠MDA
不难证明∠O’AM = (∠B-∠C)/2
所以∠MDA =(∠B-∠C)/2
∠ADC = ∠C
∠MDC = ∠MDA+ ∠ADC = ∠C +(∠B-∠C)/2 = (∠B+∠C)/2
………………
………………
还用我再写下去么?
设△ABC外接圆半径为R
S△ABC=2R*RsinAsinBsinC = 2R*Rsinβsinγsin(β+γ)
∠BAF = ∠CAE = 90 -β
∠EAF= β-γ
AF = 2R*cos(β-γ)
AP = AF*cos(90—β) = AF*sin β =2R cos(β-γ) sin β
AQ = AEsin β =2R cos(β-γ)sin γ
利用你已经证明的结果AE⊥PQ,设AE和PQ相交于G
PG=APsin γ= 2R cos(β-γ)sin βcosγ
QG= 2R cos(β-γ)sin γcosβ
PQ = 2R cos(β-γ)( sin βcosγ +sin γcosβ) = 2Rcos(β-γ)sin (β+γ)
( 如果你对三角公式不熟悉,PQ的值也可以通过△PQF∽△BCE,或是余弦定理得到)
AG = AQcos(90- β) = 2R cos(β-γ) sin βsin γ
EG = 2R-AG = 2R(1- cos(β-γ) sin βsin γ)
S△PQE = AG*PQ/2=2R*R(1- cos(β-γ) sin βsin γ) *cos(β-γ)sin (β+γ)
S△PQE/ S△ABC= [(1- cos(β-γ) sin βsin γ) *cos(β-γ)sin (β+γ) ]/ [sinβsinγsin(β+γ) ]
=1/sinβsinγ - cos(β-γ) *cos(β-γ)
= cotβcotγ+[sin(β-γ)]^2
2.
由已知条件,O,M,A 三线共点
OM*MA =OP*OP=OD*OD
∆ODM ∽∆OAD
∠ODM = ∠OAD (这是证明此题最关键的一步)
设△ABC外接圆圆心为O’,O’,O,D三线共点
∠O’DA= ∠O’AD
∠O’AM = ∠MDA
不难证明∠O’AM = (∠B-∠C)/2
所以∠MDA =(∠B-∠C)/2
∠ADC = ∠C
∠MDC = ∠MDA+ ∠ADC = ∠C +(∠B-∠C)/2 = (∠B+∠C)/2
………………
………………
还用我再写下去么?
看了 两道平面几何题.1、已知锐角...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
在ΔABC中,A,B为锐角,A,B,C所对的边分别为a,b,c且cos2A=3/5,sinB=根号 2020-04-05 …
设A为三阶矩阵,|A|=1/2求|(2A)^-1-5A*|因为A*=|A|A^-1=(1/2)A^ 2020-04-13 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
线性代数题:设A为n阶方阵,A*是A的伴随矩阵,如果/A/=a≠0,则/A*/=()设A为n阶方阵 2020-05-15 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
如果a与b互为相反数,下列说法一定成立的是 A .a^2与b^2互为相反数 B.a^3与-b^3互 2020-05-16 …
关于元素的相对原子质量计算硼有两种天然同位素(10/5)B、(11/5)B,硼元素的近似相对原子质 2020-05-16 …
已知直角三角形的两直角边分别是为a、b,斜边长为c,且a、b、c为正整数,a为质数...已知直角三 2020-05-17 …
在agNH3中含质子数为d个,则阿伏加德罗常数可表示为()A)(17d/a)/molB)(17a/ 2020-05-21 …