早教吧作业答案频道 -->其他-->
两道平面几何题.1、已知锐角△ABC为不等边三角形,AE为其外接圆直径,AD是BC边上的高,D为垂足,AD的延长线交△ABC的外接圆于F,过F点作直线AB、AC的垂线,垂足分别为P和Q.记∠ABC=β,∠ACB=γ.求证:S
题目详情
两道平面几何题.
1、已知锐角△ABC为不等边三角形,AE为其外接圆直径,AD是BC边上的高,D为垂足,AD的延长线交△ABC的外接圆于F,过F点作直线AB、AC的垂线,垂足分别为P和Q.记∠ABC=β,∠ACB=γ.
求证:S△EPQ:S△ABC=cotβcotγ+[sin(β-γ)]^2
2、已知⊙O与△ABC的边AB、AC分别相切于P和Q,与△ABC外接圆相切于D,M是PQ的中点.
求证:∠POQ=2∠MDC
一题50分,回答后自会加分.
第一题我已得出一个条件:AE⊥PQ
那第二题呢?
1、已知锐角△ABC为不等边三角形,AE为其外接圆直径,AD是BC边上的高,D为垂足,AD的延长线交△ABC的外接圆于F,过F点作直线AB、AC的垂线,垂足分别为P和Q.记∠ABC=β,∠ACB=γ.
求证:S△EPQ:S△ABC=cotβcotγ+[sin(β-γ)]^2
2、已知⊙O与△ABC的边AB、AC分别相切于P和Q,与△ABC外接圆相切于D,M是PQ的中点.
求证:∠POQ=2∠MDC
一题50分,回答后自会加分.
第一题我已得出一个条件:AE⊥PQ
那第二题呢?
▼优质解答
答案和解析
1.
设△ABC外接圆半径为R
S△ABC=2R*RsinAsinBsinC = 2R*Rsinβsinγsin(β+γ)
∠BAF = ∠CAE = 90 -β
∠EAF= β-γ
AF = 2R*cos(β-γ)
AP = AF*cos(90—β) = AF*sin β =2R cos(β-γ) sin β
AQ = AEsin β =2R cos(β-γ)sin γ
利用你已经证明的结果AE⊥PQ,设AE和PQ相交于G
PG=APsin γ= 2R cos(β-γ)sin βcosγ
QG= 2R cos(β-γ)sin γcosβ
PQ = 2R cos(β-γ)( sin βcosγ +sin γcosβ) = 2Rcos(β-γ)sin (β+γ)
( 如果你对三角公式不熟悉,PQ的值也可以通过△PQF∽△BCE,或是余弦定理得到)
AG = AQcos(90- β) = 2R cos(β-γ) sin βsin γ
EG = 2R-AG = 2R(1- cos(β-γ) sin βsin γ)
S△PQE = AG*PQ/2=2R*R(1- cos(β-γ) sin βsin γ) *cos(β-γ)sin (β+γ)
S△PQE/ S△ABC= [(1- cos(β-γ) sin βsin γ) *cos(β-γ)sin (β+γ) ]/ [sinβsinγsin(β+γ) ]
=1/sinβsinγ - cos(β-γ) *cos(β-γ)
= cotβcotγ+[sin(β-γ)]^2
2.
由已知条件,O,M,A 三线共点
OM*MA =OP*OP=OD*OD
∆ODM ∽∆OAD
∠ODM = ∠OAD (这是证明此题最关键的一步)
设△ABC外接圆圆心为O’,O’,O,D三线共点
∠O’DA= ∠O’AD
∠O’AM = ∠MDA
不难证明∠O’AM = (∠B-∠C)/2
所以∠MDA =(∠B-∠C)/2
∠ADC = ∠C
∠MDC = ∠MDA+ ∠ADC = ∠C +(∠B-∠C)/2 = (∠B+∠C)/2
………………
………………
还用我再写下去么?
设△ABC外接圆半径为R
S△ABC=2R*RsinAsinBsinC = 2R*Rsinβsinγsin(β+γ)
∠BAF = ∠CAE = 90 -β
∠EAF= β-γ
AF = 2R*cos(β-γ)
AP = AF*cos(90—β) = AF*sin β =2R cos(β-γ) sin β
AQ = AEsin β =2R cos(β-γ)sin γ
利用你已经证明的结果AE⊥PQ,设AE和PQ相交于G
PG=APsin γ= 2R cos(β-γ)sin βcosγ
QG= 2R cos(β-γ)sin γcosβ
PQ = 2R cos(β-γ)( sin βcosγ +sin γcosβ) = 2Rcos(β-γ)sin (β+γ)
( 如果你对三角公式不熟悉,PQ的值也可以通过△PQF∽△BCE,或是余弦定理得到)
AG = AQcos(90- β) = 2R cos(β-γ) sin βsin γ
EG = 2R-AG = 2R(1- cos(β-γ) sin βsin γ)
S△PQE = AG*PQ/2=2R*R(1- cos(β-γ) sin βsin γ) *cos(β-γ)sin (β+γ)
S△PQE/ S△ABC= [(1- cos(β-γ) sin βsin γ) *cos(β-γ)sin (β+γ) ]/ [sinβsinγsin(β+γ) ]
=1/sinβsinγ - cos(β-γ) *cos(β-γ)
= cotβcotγ+[sin(β-γ)]^2
2.
由已知条件,O,M,A 三线共点
OM*MA =OP*OP=OD*OD
∆ODM ∽∆OAD
∠ODM = ∠OAD (这是证明此题最关键的一步)
设△ABC外接圆圆心为O’,O’,O,D三线共点
∠O’DA= ∠O’AD
∠O’AM = ∠MDA
不难证明∠O’AM = (∠B-∠C)/2
所以∠MDA =(∠B-∠C)/2
∠ADC = ∠C
∠MDC = ∠MDA+ ∠ADC = ∠C +(∠B-∠C)/2 = (∠B+∠C)/2
………………
………………
还用我再写下去么?
看了 两道平面几何题.1、已知锐角...的网友还看了以下:
如图,已知正方形ABCD的边长为2,在CD的延长线上取一点E,以CE为直径作圆交AD的延长线于点F 2020-05-14 …
如图9,在四边形ABCD中,点E在线段CD上,=如图9,在四边形ABCD中,点E在线段CD上,DC 2020-06-04 …
已知等腰三角形ABC两腰AB,AC所在直线方程分别为2x-y+2=0,4x+3y-12=0且点o( 2020-06-06 …
分线段定理已经是L1//L2//L3了,既线段2边之比等了为什么在做题目时,已经知道L1//L2/ 2020-07-02 …
求曲边梯形面积的微分已知曲线y=y(x),曲线两端向x轴引垂线构成曲边梯形,一边是变的,求自变量增 2020-07-06 …
求曲边梯形面积的微分已知曲线y=y(x),曲线两端向x轴引垂线构成曲边梯形,一边是变的,求自变量增 2020-07-06 …
如图ef是平行四边形ABCD的对角线AC的三等分线求四边形BFDE是平行四边形 2020-07-14 …
三角形ABC中点C是AC边上的一动点,过点O做直线MN平行BC,设MN交∠BAC的平分线于点E,交 2020-08-03 …
1、有一个N边形的内角与外角和的比是9:2,求N边形的边数2、两个多边形边数之比是1:2内角和是3: 2020-10-31 …
均速拉动线筒,线筒边转动边由大变小,线的张力是否一样?有一个线筒装满线,重量(10kg),水平挂着, 2020-11-22 …