早教吧作业答案频道 -->其他-->
定积分引入时的小问题&定积分应用中的小问题在“定积分”这一章中,教材上介绍了近似计算定积分的3种方法:矩形法,梯形法、抛物线法(即辛普森公式)。但是我查阅了国内的各种教
题目详情
定积分引入时的小问题&定积分应用中的小问题在“定积分”这一章中,教材上介绍了近似计算定积分的3种方法:矩形法,梯形法、抛物线法(即辛普森公式)。但是我查阅了国内的各种教材,在“定积分”这一章的开篇引入定积分的概念是,用的都是“求曲边梯形的面积”这个例子,而且在求面积的时候,用的都是“矩形法”求面积,这里为什么不用“梯形法”或“抛物线法”来引入“定积分”的概念呢? 在定积分的几何应用中,我们学习了求解平面图形的面积。我们在取面积元素(有的版本的教材称之为“面积微元”)时,没有使用取梯形或抛物线的分析方法,一律用的是取“矩形”,这对计算平面图形的面积有影响吗?为什么我们不取梯形或抛物线呢? 在计算旋转体的体积时,我们截取的体积元素是小的圆柱体,而在计算旋转体的侧面积时我们截取的面积元素则是小圆台。那么,在计算旋转体的侧面积时我们可以使用截取小圆柱体的方法吗?
▼优质解答
答案和解析
曲边梯形其实提供的是积分思想,但是实际是一种精确的计算方法,因为每一个函数图像都可以被看做是以X轴上的N个小的等分点为界的曲边梯形,而引入矩形法则是将精确的不可能计算化作无限接近精确的可行计算,定积分概念的引进,并不是单纯的说是使用方法问题,而主要在于引进积分的无限分割思想,而在计算当中当然是越简洁越不容易出问题,因为应用无限分割的思想,所以选用的小图形并不影响面积的计算,只是在于计算的难度问题,选用熟悉的易于计算的小图形便于规范计算方法也方便了实际计算,使之不容易出现计算错误,至于实际问题中的小图形选取则是根据你的实际需要进行无限分割,但是原则应该是一类图形并且尽量易于计算。旋转体的问题同样是这样的……
看了 定积分引入时的小问题&定积分...的网友还看了以下:
正方形面积计算新法正方形的面积等不等于对角线×(对角线÷2) 2020-05-21 …
曲线积分的问题计算第二类曲线积分∮y²dx+z²dy+x²dz,L为曲线x²+y²+z²=R²,x 2020-05-23 …
举一个最简单的曲边梯形面积计算题,用以下5种方法作出解答积分的上下限参数自己定1,定积分求曲边梯形 2020-06-05 …
微积分曲线积分问题1.计算曲线积分∫L(L为下标)xds,其中曲线L:y=x²2.计算曲线积分∮L 2020-06-10 …
利用曲线积分计算曲线所围成图形的面积星形线x=acos³t,y=asin³t,0≤t≤2利用曲线积 2020-07-18 …
电磁铁磁力计算的问题?求助专家!我找到一个计算电磁铁磁力的公式想请教你是否正确的:F=u(导磁率) 2020-07-28 …
复变积分!计算积分∫1+i→0((x-y)+ix^2)dz.积分路径为:计算积分∫1+i→0((x 2020-07-30 …
高数积分计算积分什么时候可以把积分曲线或积分曲面的方程代入被积函数以起到简化计算的作用包括各种积分 2020-08-02 …
函数f(x)在区间[a,b]上的定积分是否可以看作曲线积分?曲面积分的值与哪些因素有关?第型曲面积 2020-08-03 …
高等数学中第二类曲线积分能不能拆成两项来算?在书中,介绍的是把曲线写成参数方程,然后dx,dy分别用 2020-11-08 …