早教吧作业答案频道 -->数学-->
复数的运算问题比如比如(-1)^(-i)的如何运算的?因为由欧拉定理e^(pi*i)=-1(-1)^(-i)=[(-1)^(-1)]^i=(-1)^i=[e^(pi*i)]^i=e^(-pi)=1/(e^pi)(-1)^(-i)=[(-1)^i]^(-1)=[1/(e^pi)]^(-1)=e^pi哪一个计算才是正确的?
题目详情
复数的运算问题
比如比如(-1)^(-i)的如何运算的?
因为由欧拉定理e^(pi*i)=-1
(-1)^(-i)=[(-1)^(-1)]^i=(-1)^i=[e^(pi*i)]^i=e^(-pi)=1/(e^pi)
(-1)^(-i)=[(-1)^i]^(-1)=[1/(e^pi)]^(-1)=e^pi
哪一个计算才是正确的?
比如比如(-1)^(-i)的如何运算的?
因为由欧拉定理e^(pi*i)=-1
(-1)^(-i)=[(-1)^(-1)]^i=(-1)^i=[e^(pi*i)]^i=e^(-pi)=1/(e^pi)
(-1)^(-i)=[(-1)^i]^(-1)=[1/(e^pi)]^(-1)=e^pi
哪一个计算才是正确的?
▼优质解答
答案和解析
看了之后我也蒙了,不过我觉得可能虚数不满足一些实数上的运算法则.
应该这样做:
(-1)^(-i)=(e^iπ)^(-i)=e^(-i^2*π)=e^π
你的那个做法说明虚数应该是不满足幂的一些运算.
你可以看一下百科上的资料:
和i有关的运算
许多实数的运算都可以推广到i,例如指数、对数和三角函数. 一个数的ni次方为: x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)). 一个数的ni次方根为: x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))). 以i为底的对数为: log_i(x) = 2 ln(x)/ iπ. i的余弦是一个实数: cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064. i的正弦是虚数: sin(i) = sinh(1) i =[(e - 1/e)/ 2]i = 1.17520119 i. i,e,π,0和1的奇妙关系: e^(iπ)+1=0 i^I=e^(-π÷2)
应该这样做:
(-1)^(-i)=(e^iπ)^(-i)=e^(-i^2*π)=e^π
你的那个做法说明虚数应该是不满足幂的一些运算.
你可以看一下百科上的资料:
和i有关的运算
许多实数的运算都可以推广到i,例如指数、对数和三角函数. 一个数的ni次方为: x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)). 一个数的ni次方根为: x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))). 以i为底的对数为: log_i(x) = 2 ln(x)/ iπ. i的余弦是一个实数: cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064. i的正弦是虚数: sin(i) = sinh(1) i =[(e - 1/e)/ 2]i = 1.17520119 i. i,e,π,0和1的奇妙关系: e^(iπ)+1=0 i^I=e^(-π÷2)
看了 复数的运算问题比如比如(-1...的网友还看了以下:
线性代数:由变换r(i)和r(j)交换的逆变换就是其本身知E(i,j)^-1=E(i,j);这是为 2020-05-16 …
求下面函数的解释,看不懂function A = fun(W)[m,n] = size(W); e 2020-06-27 …
方程转换x=ln(c*(e^y-1)/(e^y))如何转换成y=-In(1-ce^x), 2020-07-25 …
复平面上A,B两点对应的复数分别为1和i,如果线段AB上的点对应复数z=a+bi,求a,b间关系及 2020-08-01 …
(-1/3A)(-1/3A)^-1=E?有公式AA^-1=E但如果有系数还等于E?还有一个问题有一 2020-08-02 …
复数的运算问题比如比如(-1)^(-i)的如何运算的?因为由欧拉定理e^(pi*i)=-1(-1) 2020-08-02 …
召唤组合数学达人!有奇数个变量,ei,i=1,2,.,2k+1满足:e1+e2=e2+e3+e(2k 2020-10-31 …
(-1)^(-i)=多少?(-1)^(-i)=[(-1)^(-1)]^i=(-1)^i=[e^(pi 2020-11-01 …
求证e^i(4π/n)+e^i(8π/n)+...+e^i4(n-1)π/n+e^i(4nπ/n)= 2020-11-01 …
复变函数的积分计算积分I=(闭合c曲线的积分符号)[1/(z-z0)^n+1]dz,其中C是以z0为 2020-11-01 …