早教吧作业答案频道 -->数学-->
已知抛物线y=ax的二次方-bx+c与y轴交与点A(0,3),与x轴分别交与B(1,0),C(5,0)两点.(1)求此抛物线的解析式;(2)若点D为线段OA的一个三等分点,求直线DC的解析式(3)若一个动点P自OA的中点M出
题目详情
已知抛物线y=ax的二次方-bx+c与y轴交与点A(0,3),与x轴分别交与B(1,0),C(5,0)两点.
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式
(3)若一个动点P自OA的中点M出发,先到达X轴上的某点(设为点E),再到达抛物线的对称轴上的某一点(设为点F),最后运动到点A,求使点p运动的总路径最短的点E,点F的坐标,并求出这个最短总路径的长.
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式
(3)若一个动点P自OA的中点M出发,先到达X轴上的某点(设为点E),再到达抛物线的对称轴上的某一点(设为点F),最后运动到点A,求使点p运动的总路径最短的点E,点F的坐标,并求出这个最短总路径的长.
▼优质解答
答案和解析
(1)把点A、点B、点C分别代入y=ax的二次方-bx+c,可以求得a=3/5,b=18/5,c=3
所以抛物线的解析式为y=3/5x的二次方-18/5x+3
(2)OA=3,所以点D为(0,1)或者点D=(0,2)
设直线DC的解析式为y=kx+b
把点D(0,1)和点C(5,0)代入得y=-1/5x+1
把点D(0,2)和点C(5,0)代入得y=-2/5x+2
所以直线DC的解析式为y=-1/5x+1或者y=-2/5x+2
(3)由题意可得M为(0,3/2)
要使点P运动的总路径最短,则点E与点F重合,即为抛物线的对称轴与x轴的交点.
由抛物线y=3/5x的二次方-18/5x+3,可得对称轴为x=3
则点E为(3,0),点F与点E重合.
根据勾股定理,可求得ME=3√5/2,AE=3√2
所以这个最短总路径的长=ME+AE=3√5/2+3√2
所以抛物线的解析式为y=3/5x的二次方-18/5x+3
(2)OA=3,所以点D为(0,1)或者点D=(0,2)
设直线DC的解析式为y=kx+b
把点D(0,1)和点C(5,0)代入得y=-1/5x+1
把点D(0,2)和点C(5,0)代入得y=-2/5x+2
所以直线DC的解析式为y=-1/5x+1或者y=-2/5x+2
(3)由题意可得M为(0,3/2)
要使点P运动的总路径最短,则点E与点F重合,即为抛物线的对称轴与x轴的交点.
由抛物线y=3/5x的二次方-18/5x+3,可得对称轴为x=3
则点E为(3,0),点F与点E重合.
根据勾股定理,可求得ME=3√5/2,AE=3√2
所以这个最短总路径的长=ME+AE=3√5/2+3√2
看了 已知抛物线y=ax的二次方-...的网友还看了以下:
设函数f(x)=x^2-alnx与g(x)=(1/a)x-√x的图像分别交直线x=1于点A、B,且 2020-05-15 …
判断三维空间中一点在直线上的方法我想的是通过三维空间直线坐标的两点式来确定:有3个点,p,a,b. 2020-06-14 …
命题符号化:(1)不管黑猫白猫,抓到老鼠就是好猫.(2)在平面上存在两点,有且只有一条直线通过这两 2020-06-16 …
设f(x)=(x-a)φ(x),其中φ(x)在点x=a处连续,则f'(a)=()? 2020-07-15 …
一个烦人高数题设函数f(x)在(a,b)上可微,对任意一点x.∈(a,b),若lim[x→x.]f 2020-07-30 …
二次函数已知与X轴交于两点,怎么求函数解析式?请详细一点.忘了说,是只知道与X轴的交点两个坐标,( 2020-08-01 …
已知f(x)=3x²-2x+2,求x=1的方程1.求切点2.求k3,点斜式y-b=(x-a已知f( 2020-08-01 …
法向量和方向向量和一般式有什么关系啊点向式 v2(x-x0)-v1(y-y0)=0点法式 A(x- 2020-08-01 …
请问为什么指数函数的a不能小于0a不能小于0是x∈R的情况下吗?那如果把取值范围缩小一点,x∈Z, 2020-08-02 …
自倾斜角β的斜坡上方A点水平丢出一颗球,落点距A点X,则(自倾斜角β的斜坡上方A点水平丢出一颗球,落 2021-01-12 …