早教吧作业答案频道 -->数学-->
已知抛物线y=ax的二次方-bx+c与y轴交与点A(0,3),与x轴分别交与B(1,0),C(5,0)两点.(1)求此抛物线的解析式;(2)若点D为线段OA的一个三等分点,求直线DC的解析式(3)若一个动点P自OA的中点M出
题目详情
已知抛物线y=ax的二次方-bx+c与y轴交与点A(0,3),与x轴分别交与B(1,0),C(5,0)两点.
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式
(3)若一个动点P自OA的中点M出发,先到达X轴上的某点(设为点E),再到达抛物线的对称轴上的某一点(设为点F),最后运动到点A,求使点p运动的总路径最短的点E,点F的坐标,并求出这个最短总路径的长.
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式
(3)若一个动点P自OA的中点M出发,先到达X轴上的某点(设为点E),再到达抛物线的对称轴上的某一点(设为点F),最后运动到点A,求使点p运动的总路径最短的点E,点F的坐标,并求出这个最短总路径的长.
▼优质解答
答案和解析
(1)把点A、点B、点C分别代入y=ax的二次方-bx+c,可以求得a=3/5,b=18/5,c=3
所以抛物线的解析式为y=3/5x的二次方-18/5x+3
(2)OA=3,所以点D为(0,1)或者点D=(0,2)
设直线DC的解析式为y=kx+b
把点D(0,1)和点C(5,0)代入得y=-1/5x+1
把点D(0,2)和点C(5,0)代入得y=-2/5x+2
所以直线DC的解析式为y=-1/5x+1或者y=-2/5x+2
(3)由题意可得M为(0,3/2)
要使点P运动的总路径最短,则点E与点F重合,即为抛物线的对称轴与x轴的交点.
由抛物线y=3/5x的二次方-18/5x+3,可得对称轴为x=3
则点E为(3,0),点F与点E重合.
根据勾股定理,可求得ME=3√5/2,AE=3√2
所以这个最短总路径的长=ME+AE=3√5/2+3√2
所以抛物线的解析式为y=3/5x的二次方-18/5x+3
(2)OA=3,所以点D为(0,1)或者点D=(0,2)
设直线DC的解析式为y=kx+b
把点D(0,1)和点C(5,0)代入得y=-1/5x+1
把点D(0,2)和点C(5,0)代入得y=-2/5x+2
所以直线DC的解析式为y=-1/5x+1或者y=-2/5x+2
(3)由题意可得M为(0,3/2)
要使点P运动的总路径最短,则点E与点F重合,即为抛物线的对称轴与x轴的交点.
由抛物线y=3/5x的二次方-18/5x+3,可得对称轴为x=3
则点E为(3,0),点F与点E重合.
根据勾股定理,可求得ME=3√5/2,AE=3√2
所以这个最短总路径的长=ME+AE=3√5/2+3√2
看了 已知抛物线y=ax的二次方-...的网友还看了以下:
1.关于x的方程2x+a/x-1=1的解是正数,则a的取值范围是?2.分式方程1/x+1=2/x- 2020-05-01 …
根据下列问题列出关于x的方程,并将其化成一元二次方程的一般形式 (1)4个完全相同的正方形的面积之 2020-05-15 …
(X-1)(X+1)=X的平方-1(X-1)(X的平方+X+1)=X的3次方-1(X-1)(X的3 2020-05-21 …
因为(x+a)(x+b)=x的平方+(a+b)x+ab,又因为整式乘法与因式分解互为逆运算,则x的 2020-06-03 …
已知函数f(x)=x的立方一ax的平方十bx十5(1)若a=一2,b=一4,求已知函数f(x)=x 2020-06-03 …
分式的值是否会改变当一个分式中,分子与分母都是未知数,例如:XY÷(X+Y)中的X,Y同时扩大为原 2020-06-04 …
解公因式1.(-y分之a的平方x)的立方除以(ay分之x)的平方(xy分之负a)的四次方2.(x+ 2020-06-06 …
篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求(1)他 2020-06-23 …
已知函数y=f(x)的定义域为[-2,4],则f(x+1)的定义域为已知y=f(x+2)的定义域为 2020-06-25 …
几道数学题,会的请点进来……(1)x的七分之六等于y的四分之三,x与y的比是?(2)在一个比例中, 2020-06-25 …