早教吧作业答案频道 -->其他-->
用Mathematica8解微分方程解不了,您知道是怎么回事吗?今天用Mathematica8解方程解不了了,一直报错:In[72]:=DSolve[y'[x]==E^x*y[x],y[x],x]\:6B63\:5728\:8BA1\:7B97In[72]:=DSolve::dvnoarg:Thefunctionyappearswithno
题目详情
用Mathematica8解微分方程解不了,您知道是怎么回事吗?
今天用Mathematica8解方程解不了了,一直报错:
In[72]:= DSolve[y'[x] == E^x*y[x], y[x], x]
\:6B63\:5728\:8BA1\:7B97In[72]:= DSolve::dvnoarg: The function y appears with no arguments. >>
Out[72]= DSolve[E^x y == E^x y[x], y[x], x]
In[60]:= DSolve[y'[x] + 2 x*y[x] == x*Exp[-x^2/2], y[x], x]
\:6B63\:5728\:8BA1\:7B97In[60]:= DSolve::dvnoarg: The function y appears with no arguments. >>
Out[60]= DSolve[E^x y + 2 x y[x] == E^(-(x^2/2)) x, y[x], x]
In[61]:= DSolve[y'[x] + y[x] == a Sin[x], y[x], x]
\:6B63\:5728\:8BA1\:7B97In[61]:= DSolve::dvnoarg: The function y appears with no arguments. >>
Out[61]= DSolve[E^x y + y[x] == a Sin[x], y[x], x]
In[62]:= DSolve[{y'[x] + y[x] == a Sin[x], y[0] == 0}, y[x], x]
\:6B63\:5728\:8BA1\:7B97In[62]:= DSolve::dvnoarg: The function y appears with no arguments. >>
In[63]:= DSolve[{E^x y + y[x] == a Sin[x], y[0] == 0}, y[x], x]
\:6B63\:5728\:8BA1\:7B97In[63]:= DSolve::dvnoarg: The function y appears with no arguments. >>
Out[63]= DSolve[{E^x y + y[x] == a Sin[x], y[0] == 0}, y[x], x]
In[64]:= DSolve[y'[x] == x, y[x], x]
\:6B63\:5728\:8BA1\:7B97In[64]:= DSolve::dvnoarg: The function y appears with no arguments. >>
Out[64]= DSolve[E^x y == x, y[x], x]
In[69]:= DSolve[{E^x y + y[x] == a Sin[x], y[0] == 0}, y, x]
\:6B63\:5728\:8BA1\:7B97In[69]:= DSolve::dvnoarg: The function y appears with no arguments. >>
Out[69]= DSolve[{E^x y + y[x] == a Sin[x], y[0] == 0}, y, x]
仔细检查过输入了,没有问题,但是解这个又可以:
In[68]:= DSolve[{x'[s] == Cos[t[s]], y'[s] == Sin[t[s]], t'[s] == s,
x[0] == 0, y[0] == 0, t[0] == 0}, {x, y, t}, s]
Out[68]= {{t -> Function[{s}, s^2/2],
x -> Function[{s}, Sqrt[\[Pi]] FresnelC[s/Sqrt[\[Pi]]]],
y -> Function[{s}, Sqrt[\[Pi]] FresnelS[s/Sqrt[\[Pi]]]]}}
今天用Mathematica8解方程解不了了,一直报错:
In[72]:= DSolve[y'[x] == E^x*y[x], y[x], x]
\:6B63\:5728\:8BA1\:7B97In[72]:= DSolve::dvnoarg: The function y appears with no arguments. >>
Out[72]= DSolve[E^x y == E^x y[x], y[x], x]
In[60]:= DSolve[y'[x] + 2 x*y[x] == x*Exp[-x^2/2], y[x], x]
\:6B63\:5728\:8BA1\:7B97In[60]:= DSolve::dvnoarg: The function y appears with no arguments. >>
Out[60]= DSolve[E^x y + 2 x y[x] == E^(-(x^2/2)) x, y[x], x]
In[61]:= DSolve[y'[x] + y[x] == a Sin[x], y[x], x]
\:6B63\:5728\:8BA1\:7B97In[61]:= DSolve::dvnoarg: The function y appears with no arguments. >>
Out[61]= DSolve[E^x y + y[x] == a Sin[x], y[x], x]
In[62]:= DSolve[{y'[x] + y[x] == a Sin[x], y[0] == 0}, y[x], x]
\:6B63\:5728\:8BA1\:7B97In[62]:= DSolve::dvnoarg: The function y appears with no arguments. >>
In[63]:= DSolve[{E^x y + y[x] == a Sin[x], y[0] == 0}, y[x], x]
\:6B63\:5728\:8BA1\:7B97In[63]:= DSolve::dvnoarg: The function y appears with no arguments. >>
Out[63]= DSolve[{E^x y + y[x] == a Sin[x], y[0] == 0}, y[x], x]
In[64]:= DSolve[y'[x] == x, y[x], x]
\:6B63\:5728\:8BA1\:7B97In[64]:= DSolve::dvnoarg: The function y appears with no arguments. >>
Out[64]= DSolve[E^x y == x, y[x], x]
In[69]:= DSolve[{E^x y + y[x] == a Sin[x], y[0] == 0}, y, x]
\:6B63\:5728\:8BA1\:7B97In[69]:= DSolve::dvnoarg: The function y appears with no arguments. >>
Out[69]= DSolve[{E^x y + y[x] == a Sin[x], y[0] == 0}, y, x]
仔细检查过输入了,没有问题,但是解这个又可以:
In[68]:= DSolve[{x'[s] == Cos[t[s]], y'[s] == Sin[t[s]], t'[s] == s,
x[0] == 0, y[0] == 0, t[0] == 0}, {x, y, t}, s]
Out[68]= {{t -> Function[{s}, s^2/2],
x -> Function[{s}, Sqrt[\[Pi]] FresnelC[s/Sqrt[\[Pi]]]],
y -> Function[{s}, Sqrt[\[Pi]] FresnelS[s/Sqrt[\[Pi]]]]}}
▼优质解答
答案和解析
你的软件安装有问题,我把你的输入验证了都可以有正确结果:
In[1]:= DSolve[y'[x] + 2 x*y[x] == x*Exp[-x^2/2],y[x],x]
Out[1]= {{y[x] -> E^(-(x^2/2)) + E^-x^2 C[1]}}
In[2]:= DSolve[y'[x] + y[x] == a Sin[x],y[x],x]
Out[2]= {{y[x] -> E^-x C[1] + 1/2 a (-Cos[x] + Sin[x])}}
In[3]:= DSolve[{y'[x] + y[x] == a Sin[x],y[0] == 0},y[x],x]
Out[3]= {{y[x] -> -(1/2) a E^-x (-1 + E^x Cos[x] - E^x Sin[x])}}
In[1]:= DSolve[y'[x] + 2 x*y[x] == x*Exp[-x^2/2],y[x],x]
Out[1]= {{y[x] -> E^(-(x^2/2)) + E^-x^2 C[1]}}
In[2]:= DSolve[y'[x] + y[x] == a Sin[x],y[x],x]
Out[2]= {{y[x] -> E^-x C[1] + 1/2 a (-Cos[x] + Sin[x])}}
In[3]:= DSolve[{y'[x] + y[x] == a Sin[x],y[0] == 0},y[x],x]
Out[3]= {{y[x] -> -(1/2) a E^-x (-1 + E^x Cos[x] - E^x Sin[x])}}
看了 用Mathematica8解...的网友还看了以下:
提问还相对比较难的数学题!(请讲明白点,1.已知方程组X-Y=2;2X+Y=m的解满足X+Y大于4, 2020-03-31 …
高数代换问题,微分方程,设y=x/lnx是微分方程y'=y/x+φ(x/y)的解,则φ(x/y)的 2020-05-16 …
解方程:(x分之x-1)-(x+1分之1-x)=(2x+2分之5x-5) 先阅读下面解方程:(x分 2020-05-16 …
解方程1000-x=800如题,解方程1000-x=800很多人都会解:1000-x-1000=8 2020-07-16 …
二元一方程:X²-x-1=2÷(X²-x)求解?二元一方程:X²-x-1=2÷(X²-x)求解?二 2020-07-25 …
方程1/x-7-1/x-5-1/x-6-1/x-4的解是x=11/2,而7+5+6+4/4=11/ 2020-07-31 …
转化思想解方程2/x(x分之2,下同)+3/x+1=133/60-4/x+2换元法解方程3x/2x 2020-08-01 …
来、分式方程、+20分.4--15题要检验.1.分式方程2/x-2-3/x=0的解是2.如果分式2 2020-08-02 …
一元一次不等式1.当K在什么范围内取何值时,关于X的方程(k+2)x-2=1-k(4-x)有不大于 2020-08-03 …
有一组方程:第一个方程是x+x/2=3的解为x=2,第二个方程是x/2+x/3=5的解为x=6,第三 2020-11-28 …