早教吧作业答案频道 -->数学-->
(a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanB=0(a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanb=0,由余弦定理a^2-b^2-c^2=-2bccosA;a^2-b^2+c^2=2accosB,∴(a^2-b^2-c^2)tanA=-2bccosA;(a^2-b^2+c^2)tanb=2accosB∴(a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanb==2acsinB-2bcsinA=2c
题目详情
(a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanB=0
(a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanb=0,
由余弦定理a^2-b^2-c^2=-2bccosA;
a^2-b^2+c^2=2accosB,
∴(a^2-b^2-c^2)tanA=-2bccosA;
(a^2-b^2+c^2)tanb=2accosB
∴(a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanb=
=2acsinB-2bcsinA=2c(asinB-bsinA)
由正弦定理a/sinA=b/sinB∴asinB-bsinA=0
∴asinB-bsinA=0,故原式=0
为什么a^2-b^2-c^2=-2bccosA
(a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanb=0,
由余弦定理a^2-b^2-c^2=-2bccosA;
a^2-b^2+c^2=2accosB,
∴(a^2-b^2-c^2)tanA=-2bccosA;
(a^2-b^2+c^2)tanb=2accosB
∴(a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanb=
=2acsinB-2bcsinA=2c(asinB-bsinA)
由正弦定理a/sinA=b/sinB∴asinB-bsinA=0
∴asinB-bsinA=0,故原式=0
为什么a^2-b^2-c^2=-2bccosA
▼优质解答
答案和解析
余弦定理:a^2=b^2+c^2-2bccosA
∴a^2-b^2-c^2=-2bccosA.
∴a^2-b^2-c^2=-2bccosA.
看了 (a^2-b^2-c^2)t...的网友还看了以下:
tanA/tanB=(2c-b)/b.tanA/tanB=(2c-b)/b.sinA*cosB/( 2020-04-09 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
求1+2+2^2+2^3+2^4+…+2^2014的值.设S=1+2+2^2+2^3+2^4+…+ 2020-07-09 …
在三角形ABC中,2asinA=(2b+c)sinB+(2c+b)sinC.求(1)A的大小∵根据 2020-08-02 …
勾股定理问题已知a、b、c为三角形ABC的三边,且满足a^2c^2-b^2c^2=a^4-b^4, 2020-08-02 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
观察下列各式然后回答问题:1-1/2^2=1/2*2/3,1-1/3^2+2/3*4/3,1-1/4 2020-11-01 …
在对(a^2+b^2)sin(A-B)=(a^2-b^2)sin(A+B)进行整理化简的过程中,到某 2020-12-27 …
已知a,b属于正实数a^2+b^2/2=1求y=a√(1+b^2)的最大值参考书上是用y^2=[a√ 2020-12-31 …
这些题怎么数学解1已知(x+m)^2(x^2-2x+3)+x(x+1)中不含x^2项求m的值2已知a 2020-12-31 …