早教吧作业答案频道 -->数学-->
设函数f(x)=e^x(e为自然对数的底数),g(x)=x^2-x,记h(x)=f(x)+g(x).有见过这题的吗,
题目详情
设函数f(x)=e^x(e 为自然对数的底数),g(x)=x^2-x,记h(x)=f(x)+g(x) .
有见过这题的吗,
有见过这题的吗,
▼优质解答
答案和解析
(1)h(x)=f(x)+g(x)=ex+x2-x,∴h'(x)=ex+2x-1,
令F(x)=h'(x),则F'(x)=ex+2>0,
∴F(x)在(-∞,+∞)上单调递增,即h'(x)在(-∞,+∞)上单调递增.
(2)由(1)知h'(x)在(-∞,+∞)上单调递增,而h'(0)=0,
∴h'(x)=0有唯一解x=0,x,h'(x),h(x)的变化情况如下表所示:
x(-∞,0)0(0,+∞)h'(x)-0+h(x)递减极小值递增又∵函数y=|h(x)-a|-1有两个零点,
∴方程|h(x)-a|-1=0有两个根,即方程h(x)=a±1有两个根
而a+1>a-1,∴a-1<(h(x))min=h(0)=1且a+1>(h(x))min=h(0)=1,
解得0<a<2.
所以,若函数y=|h(x)-a|-1有两个零点,实数a的取值范围是(0,2)
令F(x)=h'(x),则F'(x)=ex+2>0,
∴F(x)在(-∞,+∞)上单调递增,即h'(x)在(-∞,+∞)上单调递增.
(2)由(1)知h'(x)在(-∞,+∞)上单调递增,而h'(0)=0,
∴h'(x)=0有唯一解x=0,x,h'(x),h(x)的变化情况如下表所示:
x(-∞,0)0(0,+∞)h'(x)-0+h(x)递减极小值递增又∵函数y=|h(x)-a|-1有两个零点,
∴方程|h(x)-a|-1=0有两个根,即方程h(x)=a±1有两个根
而a+1>a-1,∴a-1<(h(x))min=h(0)=1且a+1>(h(x))min=h(0)=1,
解得0<a<2.
所以,若函数y=|h(x)-a|-1有两个零点,实数a的取值范围是(0,2)
看了 设函数f(x)=e^x(e为...的网友还看了以下:
设a>0,a≠1,x,y满足log以a为底x的对数+3log以x为底a的对数-log以x为底y的对 2020-05-16 …
已知函数f(x)=(x∧2-3x+9/4)e∧x其中e为自然数的底数.(1)函数f(x)的图像在x 2020-06-03 …
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x), 2020-06-11 …
求函数的驻点f'x(x,y)=2xy(4-x-y)-x^2y=0.(1)其中f'x(x,y)中左边 2020-07-11 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
1.集合M={x|x^2>4},P={x|2/{x-1}≥0,则集合P除集合M的集合N{}A:{x 2020-07-30 …
紧急已知函数f(x)=x^2+ax-lnx,(x∈R).数学高手老师进来-----(1)若a=1, 2020-07-31 …
已知函数f(x)=x+a²/x,g(x)=x+lnx,其中a>0.(1)若函数y=f(x)在[1, 2020-08-02 …
已知函数f(x)=(x^2+ax+a)e^(-x)(a为常数,e为自然对数的底).(1)若函数已知 2020-08-02 …
1.已知2^(x²+x)≤(1/4)^x-2,求函数y=(1/2)^x的值域2.若f(x)=1+lo 2020-11-27 …