早教吧作业答案频道 -->其他-->
已知函数f(x)=ea-x,其中e是自然对数的底数,a∈R.(Ⅰ)求函数g(x)=xf(x)的单调区间;(Ⅱ)试确定函数h(x)=f(x)+x的零点个数,并说明理由.
题目详情
已知函数f(x)=ea-x,其中e是自然对数的底数,a∈R.
(Ⅰ)求函数g(x)=xf(x)的单调区间;
(Ⅱ)试确定函数h(x)=f(x)+x的零点个数,并说明理由.
(Ⅰ)求函数g(x)=xf(x)的单调区间;
(Ⅱ)试确定函数h(x)=f(x)+x的零点个数,并说明理由.
▼优质解答
答案和解析
(Ⅰ)∵g(x)=xea-x,x∈R,
∴g'(x)=(1-x)ea-x.
令g'(x)=0,得x=1.
当x变化时,g(x)和g'(x)的变化情况如下:
故g(x)的单调递减区间为(1,+∞);单调递增区间为(-∞,1).
(Ⅱ)∵h(x)=ea-x+x,
∴h'(x)=1-ea-x.
令h'(x)=0,得x=a.
当x变化时,h(x)和h'(x)的变化情况如下:
即h(x)的单调递增区间为(a,+∞);单调递减区间为(-∞,a).
∴h(x)的最小值为h(a)=1+a.
①当1+a>0,即a>-1时,函数h(x)不存在零点.
②当1+a=0,即a=-1时,函数h(x)有一个零点.
③当1+a<0,即a<-1时,h(0)=ea>0,
下证:h(2a)>0.
令m(x)=ex-2x,则m'(x)=ex-2.
解m'(x)=ex-2=0得x=ln2.
当x>ln2时,m'(x)>0,
∴函数m(x)在[ln2,+∞)上是增函数.
取x=-a>1>ln2,
得:m(-a)=e-a+2a>eln2-2ln2=2-2ln2>0.
∴h(2a)=e-a+2a=m(-a)>0.
结合函数h(x)的单调性可知,
此时函数h(x)有两个零点.
综上,当a>-1时,函数h(x)不存在零点;
a=-1时,函数h(x)有一个零点;
当a<-1时,函数h(x)有两个零点.
∴g'(x)=(1-x)ea-x.
令g'(x)=0,得x=1.
当x变化时,g(x)和g'(x)的变化情况如下:
x | (-∞,1) | 1 | (1,+∞) |
g'(x) | + | 0 | - |
g(x) | ↗ | ea-1 | ↘ |
(Ⅱ)∵h(x)=ea-x+x,
∴h'(x)=1-ea-x.
令h'(x)=0,得x=a.
当x变化时,h(x)和h'(x)的变化情况如下:
x | (-∞,a) | a | (a,+∞) |
h'(x) | - | 0 | + |
h(x) | ↘ | 1+a | ↗ |
∴h(x)的最小值为h(a)=1+a.
①当1+a>0,即a>-1时,函数h(x)不存在零点.
②当1+a=0,即a=-1时,函数h(x)有一个零点.
③当1+a<0,即a<-1时,h(0)=ea>0,
下证:h(2a)>0.
令m(x)=ex-2x,则m'(x)=ex-2.
解m'(x)=ex-2=0得x=ln2.
当x>ln2时,m'(x)>0,
∴函数m(x)在[ln2,+∞)上是增函数.
取x=-a>1>ln2,
得:m(-a)=e-a+2a>eln2-2ln2=2-2ln2>0.
∴h(2a)=e-a+2a=m(-a)>0.
结合函数h(x)的单调性可知,
此时函数h(x)有两个零点.
综上,当a>-1时,函数h(x)不存在零点;
a=-1时,函数h(x)有一个零点;
当a<-1时,函数h(x)有两个零点.
看了 已知函数f(x)=ea-x,...的网友还看了以下:
假设U=F(G(X)+Y),其中Y=Y(X)由方程Y方+e的y方=SIN(X+Y)确定,而且F,G 2020-05-14 …
试确定a、b,使分段函数f(x)=ae^x+be^(-x),x≥0;f(x)=1/x*ln(1+x 2020-05-14 …
在梯形ABCD中,AD‖BC,CD=5,AD=7,BC=13,梯形ABCD的面积为40,P是一个动 2020-05-14 …
给定f(x)在x=0点展开为泰勒幂级数和在其他点展开,他们的收敛半径是一样的吗?我只知道收敛半径由 2020-06-04 …
曲线y=x-e^x在点(0,)处的切线平行于X轴?怎么求另一个点Y?y'=1-e^x与x轴平行就是 2020-06-05 …
(2014•四川)设m∈R,过定点A的动直线x+my=0和过定点B的直线mx-y-m+3=0交于点 2020-06-14 …
已知函数f(x)=1/x+1,则函数f[(fx)]的定义域(x)=1/(x+1)的定义域为X不等于 2020-06-21 …
这道极限定理为什么要加一个没用的条件定理6(复合函数的极限运算法则)设函数y=f[g(x)]是由函 2020-07-21 …
设函数y=y(x)由方程2y^3-2y^2+2xy-x^2=1所确定.求y=y(x)的驻点,并且判 2020-07-31 …
设m∈R,过定点A的动直线x+my=0和过定点B的直线mx-y-m+3=0交于点P(x,y),则|P 2020-10-30 …