早教吧作业答案频道 -->数学-->
已知M(-3,0)N(3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m(m≥-1,m≠0)(1)求P点的轨迹方程并讨论轨迹是什么曲线(已解出,(2)若m=-5/9P点的轨迹为曲线C,过点Q(2,0)
题目详情
已知M(-3,0)N(3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m(m≥-1,m≠0)
(1)求P点的轨迹方程并讨论轨迹是什么曲线(已解出,
(2)若m=-5/9 P点的轨迹为曲线C,过点Q(2,0)斜率为k1的直线l1与曲线C交于不同的两点AB,AB中点为R,直线OR(O为坐标原点)的斜率为k2,求证k1k2为定值
我只求k2的结果以及怎么来的,我和答案的不太一样
(1)求P点的轨迹方程并讨论轨迹是什么曲线(已解出,
(2)若m=-5/9 P点的轨迹为曲线C,过点Q(2,0)斜率为k1的直线l1与曲线C交于不同的两点AB,AB中点为R,直线OR(O为坐标原点)的斜率为k2,求证k1k2为定值
我只求k2的结果以及怎么来的,我和答案的不太一样
▼优质解答
答案和解析
根据m=-5/9
求出椭圆的轨迹方程:x^2/9+y^2/5=1
因为直线l1存在斜率
设直线l1方程为 y=k(x-2)
代入椭圆方程,消去y,得
(5+9k^2)*x^2-36k^2+36k^2-45=0
设中点R的坐标为(x,y),A,B坐标分别为(x1,y1),(x2,y2)
x=(x1+x2)/2=18k^2/(5+9k^2) (韦达定理嘛)
因为R在直线l1上
y=kx-2k=-10k/(5+9k^2)
斜率k2=y/x= -5/9k
k*k2=-5/9,是定值
求出椭圆的轨迹方程:x^2/9+y^2/5=1
因为直线l1存在斜率
设直线l1方程为 y=k(x-2)
代入椭圆方程,消去y,得
(5+9k^2)*x^2-36k^2+36k^2-45=0
设中点R的坐标为(x,y),A,B坐标分别为(x1,y1),(x2,y2)
x=(x1+x2)/2=18k^2/(5+9k^2) (韦达定理嘛)
因为R在直线l1上
y=kx-2k=-10k/(5+9k^2)
斜率k2=y/x= -5/9k
k*k2=-5/9,是定值
看了 已知M(-3,0)N(3,0...的网友还看了以下:
急,如图,位于水平桌面上的木板P,由跨过定滑轮的轻绳与物块Q相连,从滑轮到P和到Q的两段绳都是水平 2020-04-09 …
如图所示,物块P(可视为质点)和木板Q的质量均为m=1kg,P与Q之间、Q与水平地面之间的动摩擦因 2020-05-13 …
如图所示,质量分别为m和M的两物体P和Q叠放在倾角为θ的斜面上,P、Q之间的动摩擦因数为μ 2020-05-17 …
P,Q,M,N分别从a,b,c,d表示的点同时出发,P,Q向数轴负方向运动;M、N向数轴正方向运动 2020-06-03 …
数轴上有三个动点P,Q,M数轴上有三个动点P,Q,M,P表示的数是-12,Q表示的数是0,M表示的 2020-06-06 …
如图所示,质量分别为m和M的两物体P和Q叠放在倾角为θ的斜面上,P、Q之间的动摩擦因数为μ1,Q与 2020-07-07 …
如图所示,位于水平桌面上的物体P,由跨过定滑轮的轻绳与物块Q相连,从滑轮到P和到Q的两段绳都是水平 2020-07-21 …
条件P:动点M到两定点距离之和等于定长;条件Q:动点M的轨迹是椭圆,P是Q的()A.充要条件B.必 2020-07-31 …
有这么一道题(截取下来的):q是质数,1/q+2/q+...+(q-1)/q=m为什么答案分析那里写 2020-11-20 …
matlab模拟带电粒子在均匀电磁场中的运动functionydot=ddlzfun(t,y,fla 2020-12-14 …