早教吧作业答案频道 -->数学-->
求图形面积(1)x=a(cost+tsint),y=a(sint-tcost)(0≤t≤2pi,a>0)与x=a(2)r=(3asintcost)/sin^3(t)+cos^3(t)(3)x^2+y^2+z^2≤1与柱体(x-0.5)^2+y^2≤0.25
题目详情
求图形面积
(1)x=a(cost+tsint),y=a(sint-tcost)(0≤t≤2pi,a>0)与x=a
(2)r=(3asintcost) / sin^3(t)+cos^3(t)
(3)x^2+y^2+z^2≤1 与柱体(x-0.5)^2+y^2≤0.25
(1)x=a(cost+tsint),y=a(sint-tcost)(0≤t≤2pi,a>0)与x=a
(2)r=(3asintcost) / sin^3(t)+cos^3(t)
(3)x^2+y^2+z^2≤1 与柱体(x-0.5)^2+y^2≤0.25
▼优质解答
答案和解析
(1).x=a(cost+tsint),y=a(sint-tcost);(0≤t≤2π,a>0)与x=a
这是一条半径为a的圆的渐开线.
ρ²=x²+y²=a²(cost+tsint)²+a²(sint-tcost)²
=a²[(cos²t+2tsintcost+t²sin²t)+(sin²t-2tsintcost+t²cos²t)]
=a²(1+t²)
故所围面积S=[0,2π](1/2)∫ρ²dt=[0,2π](a²/2)∫(1+t²)dt
=(a²/2)(t+t³/3)∣[0,2π]=(a²/2)[2π+(8/3)π²]=πa²[1+(4/3)π].
(2).r=(3asintcost) /(sin³t+cos³t)
r=3a(xy/r²)/[(y³+x³)/r³]=3arxy/(x³+y³),即有x³+y³=3axy;这是一条笛卡儿叶形线;
当0≦t≦π/2时曲线构成一个封闭的图形; 此封闭图形的面积:
S=[0,π/2](1/2)∫r²dt=[0,π/2](9a²/2)∫[(sintcost)/(sin³t+cos³t)]²dt
=[0,π/2](9a²/2)∫[(tantsect)/(1+tan³t)]²dt=[0,π/2](9a²/2)∫[tan²td/(1+tan³t)²]d(tant)
=[0,π/2](3a²/2)∫[d(1+tan³t)/(1+tan³t)²]=(3a²/2)[-1/(1+tan³t)]∣[0,π/2]=3a²/2.
(3).x²+y²+z²≤1 与柱体[x-(1/2)]²+y²≤1/4
z=±√(1-x²-y²)基于对称性取z=√(1-x²-y²);
∂z/∂x=-x/√(1-x²-y²);∂z/∂y=-y/√(1-x²-y²);1+(∂z/∂x)²+(∂z/∂y)²=1/(1-x²-y²)
面积S=[D] 2∫∫√[1+(∂z/∂x)²+(∂z/∂y)²]dxdy=[D] 2∫∫dxdy/√(1-x²-y²)
区域Dxy:[x-(1/2)]²+y²≤1/4; 用极坐标:x=rcosθ,y=rsinθ;-π/2≦θ≦π/2;0≦r≦cosθ
故S=[-π/2,π/2]2∫dθ[0,cosθ]∫rdr/√(1-r²)=[-π/2,π/2]2∫dθ[0,cosθ](-1/2)∫d(1-r²)/√(1-r²)
=[-π/2,π/2]2∫dθ[0,cosθ](-1/2)[2√(1-r²)][0,cosθ]
=[-π/2,π/2](-2)∫(sinθ-1)dθ=2(cosθ+θ)∣[-π/2,π/2]=2(π/2+π/2)=2π.
这是一条半径为a的圆的渐开线.
ρ²=x²+y²=a²(cost+tsint)²+a²(sint-tcost)²
=a²[(cos²t+2tsintcost+t²sin²t)+(sin²t-2tsintcost+t²cos²t)]
=a²(1+t²)
故所围面积S=[0,2π](1/2)∫ρ²dt=[0,2π](a²/2)∫(1+t²)dt
=(a²/2)(t+t³/3)∣[0,2π]=(a²/2)[2π+(8/3)π²]=πa²[1+(4/3)π].
(2).r=(3asintcost) /(sin³t+cos³t)
r=3a(xy/r²)/[(y³+x³)/r³]=3arxy/(x³+y³),即有x³+y³=3axy;这是一条笛卡儿叶形线;
当0≦t≦π/2时曲线构成一个封闭的图形; 此封闭图形的面积:
S=[0,π/2](1/2)∫r²dt=[0,π/2](9a²/2)∫[(sintcost)/(sin³t+cos³t)]²dt
=[0,π/2](9a²/2)∫[(tantsect)/(1+tan³t)]²dt=[0,π/2](9a²/2)∫[tan²td/(1+tan³t)²]d(tant)
=[0,π/2](3a²/2)∫[d(1+tan³t)/(1+tan³t)²]=(3a²/2)[-1/(1+tan³t)]∣[0,π/2]=3a²/2.
(3).x²+y²+z²≤1 与柱体[x-(1/2)]²+y²≤1/4
z=±√(1-x²-y²)基于对称性取z=√(1-x²-y²);
∂z/∂x=-x/√(1-x²-y²);∂z/∂y=-y/√(1-x²-y²);1+(∂z/∂x)²+(∂z/∂y)²=1/(1-x²-y²)
面积S=[D] 2∫∫√[1+(∂z/∂x)²+(∂z/∂y)²]dxdy=[D] 2∫∫dxdy/√(1-x²-y²)
区域Dxy:[x-(1/2)]²+y²≤1/4; 用极坐标:x=rcosθ,y=rsinθ;-π/2≦θ≦π/2;0≦r≦cosθ
故S=[-π/2,π/2]2∫dθ[0,cosθ]∫rdr/√(1-r²)=[-π/2,π/2]2∫dθ[0,cosθ](-1/2)∫d(1-r²)/√(1-r²)
=[-π/2,π/2]2∫dθ[0,cosθ](-1/2)[2√(1-r²)][0,cosθ]
=[-π/2,π/2](-2)∫(sinθ-1)dθ=2(cosθ+θ)∣[-π/2,π/2]=2(π/2+π/2)=2π.
看了 求图形面积(1)x=a(co...的网友还看了以下:
一、1、a+(2b-3c-4d)=;2、a-(-2b-3c+4d)=;3、(m-n)-3(z-p) 2020-05-20 …
关于正态分布p(y|z)=p(y|x)p(x|z)dx,其中p(y|x)和p(x|z)均为norm 2020-06-10 …
(1)已知m^2+n^2=1,p^2+q^2=1,mp+nq=0,求证m^2+p^2=1,n^2+ 2020-06-11 …
已知p+q+r=9,且p/(x^2-yz)=q/(y^2-zx)=r/(z^2-xy),则(px+ 2020-06-12 …
怎么用matlab的fsolve解方程?functionq=myfun(p)x=p(1);y=p( 2020-07-24 …
1)负数zz*2+z+1=0求z*3-z-1/z+1/z*3=2)p(x)被x*2+1除后余式为2 2020-07-30 …
设M={a|a=4n/3,n∈Z},N={b|2n±2/3,n∈Z},P={c|c=2n,n∈Z} 2020-07-30 …
X、Y分别服从参数为(n,p)(m,p)的二项分布,通过计算求出X+Y的分布我用的方法Z=X+YP( 2020-10-31 …
判断下列各组中的两个集合间的关系.(1)P={x|x=2n,n∈Z},Q={x|x=4n,n∈Z}; 2020-10-31 …
帮帮小弟,概率方面的东西p(x,y|z)p(y|x,z)怎么推出p(x,y|z)等于p(y|x,z) 2020-12-28 …