早教吧作业答案频道 -->数学-->
已知点F(1.0),直线L:x=-1,点E是L上的动点,过点E垂直于y轴的直线与线段EF的垂直平分线交于点W.1求点W(x,y)的轨迹C的方程.2过点A(2.0)的直线L`与轨迹C交于P、Q亮点,且向量FQ+向量FP=向量FR,
题目详情
已知点F(1.0),直线L:x=-1,点E是L上的动点,过点E垂直于y轴的直线与线段EF的垂直平分线交于点W.
1 求点W(x,y)的轨迹C的方程.
2 过点A(2.0)的直线L `与轨迹C交于P、Q亮点,且向量FQ+向量FP=向量FR,求点R的轨迹方程!
1 求点W(x,y)的轨迹C的方程.
2 过点A(2.0)的直线L `与轨迹C交于P、Q亮点,且向量FQ+向量FP=向量FR,求点R的轨迹方程!
▼优质解答
答案和解析
(1)
由题意,W在EF中垂线上,
所以WE=WF
即W到直线x=-1的距离等于W到点F(1,0)的距离.
由抛物线的几何定义可知,
W满足方程:y^2 = 4x
(2)
若直线L'为竖直直线,
即x=2
则P(2, 2√2) Q(2, -2√2)
易知FR=FP+FQ=(2,0)
则R(3,0)
若直线L'不为竖直直线,
则,设L'斜率为k
L':y=kx-2k
联立抛物线解析式,化简得:
k^2 x^2 - 4(k^2 + 1)x + 4k^2 = 0
因为直线L'与抛物线交于两个点,所以k≠0
设P(x1,k(x1-2)) Q(x2,k(x2-2))
所以FP=(x1 - 1, k(x1-2)) FQ=(x2 - 1, k(x2-2))
FR=FP+FQ=(x1+x2 - 2, k(x1+x2 - 4))
所以R(x1+x2 - 1, k(x1+x2 - 4))
由韦达定理:x1+x2 = -b/a = 4 + 1/k^2
代入得:
R(3 + 1/k^2 , k)
即Xr=3 + 1/k^2; Yr=k
Xr - 1/Yr^2 = 3
所以R的轨迹方程为:x - 1/y^2 = 3
由题意,W在EF中垂线上,
所以WE=WF
即W到直线x=-1的距离等于W到点F(1,0)的距离.
由抛物线的几何定义可知,
W满足方程:y^2 = 4x
(2)
若直线L'为竖直直线,
即x=2
则P(2, 2√2) Q(2, -2√2)
易知FR=FP+FQ=(2,0)
则R(3,0)
若直线L'不为竖直直线,
则,设L'斜率为k
L':y=kx-2k
联立抛物线解析式,化简得:
k^2 x^2 - 4(k^2 + 1)x + 4k^2 = 0
因为直线L'与抛物线交于两个点,所以k≠0
设P(x1,k(x1-2)) Q(x2,k(x2-2))
所以FP=(x1 - 1, k(x1-2)) FQ=(x2 - 1, k(x2-2))
FR=FP+FQ=(x1+x2 - 2, k(x1+x2 - 4))
所以R(x1+x2 - 1, k(x1+x2 - 4))
由韦达定理:x1+x2 = -b/a = 4 + 1/k^2
代入得:
R(3 + 1/k^2 , k)
即Xr=3 + 1/k^2; Yr=k
Xr - 1/Yr^2 = 3
所以R的轨迹方程为:x - 1/y^2 = 3
看了 已知点F(1.0),直线L:...的网友还看了以下:
关于生命的作文~30分以生命的帐单为题600字左右题目是生命的账单,并不是对生命的账单有感!可以写小 2020-03-31 …
1.关于x的方程2x+a/x-1=1的解是正数,则a的取值范围是?2.分式方程1/x+1=2/x- 2020-05-01 …
下列关于氮的叙述中,不正确的是A.氮分子为非极性分子B.氮有多种化合价C.氮元素的非金属性较强,所 2020-05-13 …
关于元素的相对原子质量计算硼有两种天然同位素(10/5)B、(11/5)B,硼元素的近似相对原子质 2020-05-16 …
用水不大于10吨的部分按1.5元每吨收费,大于10吨不大于m吨的部分按2元收费,大于m吨的按3元收 2020-05-21 …
下列关于硅的说法不正确的是()A.硅是非金属元素,它的单质是灰黑色有金属光泽的固体B.硅的导电性能 2020-05-23 …
关于杠杆的初三物理题,木板AB为8m,重200N,OA=5M,A端被一绳子竖直悬挂着,僧子所能承受 2020-05-23 …
一木块漂浮于50℃时的KNO3饱和溶液中(见图A),当温度改变时(不考虑由此引起的木块体积的变化) 2020-06-03 …
生命的生存依赖于一定的环境,环境的变化会对生物产生各种影响.下列现象属于环境影响生物的是()A.枯 2020-06-21 …
抚顺)1.下列物态变化中属于吸热的是(不定项)()A.树上洁白的雪B.铁栅栏上的霜C.小草上晶莹的 2020-06-28 …