早教吧 育儿知识 作业答案 考试题库 百科 知识分享

函数f(x)=x^3+ax^2+bx+c和g(x)=4x^2-7x+2满足下列两个条件,求abc的值1f(x)在x=-1处有极值2曲线y=f(x)和y=g(x)在(2,4)处有公切线

题目详情
函数f(x)=x^3+ax^2+bx+c和g(x)=4x^2-7x+2满足下列两个条件,求abc的值
1f(x)在x=-1处有极值
2曲线y=f(x)和y=g(x)在(2,4)处有公切线
▼优质解答
答案和解析
f'(x)=3x^2+2ax+b 在x=-1有极值可得:
3-2a+b=0``````````````````````````````1
g'(x)=8x-7曲线y=f(x)和y=g(x)在(2,4)处有公切线
可得:
f(2)=g(2)=4 可得:
8+4a+2b+c=4````````````````````````2
f'(2)=g'(2)可得:
12+4a+b=16-7``````````````````````3
联立1、2、3解得:a=0,b=-3,c=2