早教吧作业答案频道 -->数学-->
如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=12BC,证明
题目详情
如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.

(1)证明:四边形EGFH是平行四边形;
(2)在(1)的条件下,若EF⊥BC,且EF=
BC,证明:平行四边形EGFH是正方形.

(1)证明:四边形EGFH是平行四边形;
(2)在(1)的条件下,若EF⊥BC,且EF=
| 1 |
| 2 |
▼优质解答
答案和解析
证明:(1)∵G,F分别是BE,BC的中点,
∴GF∥EC且GF=
EC.
又∵H是EC的中点,EH=
EC,
∴GF∥EH且GF=EH.
∴四边形EGFH是平行四边形.
(2)连接GH,EF.
∵G,H分别是BE,EC的中点,
∴GH∥BC且GH=
BC.
又∵EF⊥BC且EF=
BC,
又∵EF⊥BC,GH是三角形EBC的中位线,
∴GH∥BC,
∴EF⊥GH,
又∵EF=GH.
∴平行四边形EGFH是正方形.
∴GF∥EC且GF=
| 1 |
| 2 |
又∵H是EC的中点,EH=
| 1 |
| 2 |
∴GF∥EH且GF=EH.
∴四边形EGFH是平行四边形.
(2)连接GH,EF.

∵G,H分别是BE,EC的中点,
∴GH∥BC且GH=
| 1 |
| 2 |
又∵EF⊥BC且EF=
| 1 |
| 2 |
又∵EF⊥BC,GH是三角形EBC的中位线,
∴GH∥BC,
∴EF⊥GH,
又∵EF=GH.
∴平行四边形EGFH是正方形.
看了 如图,在四边形ABCD中,点...的网友还看了以下:
如图,在矩形ABCD中,AB=5,AD=8,直角尺的直角顶点E在AD上滑动时(点E与A、D不重合) 2020-05-17 …
探索如图,画∠AOB=120°及角平分线OC,把三角形的60°角的顶点放在OC上一点D处,绕点D旋 2020-06-02 …
一道三点共线的证明题目,难度较大四边形ABCD内接于圆,其边AB与DC的延长线交于点P,AD与BC 2020-06-27 …
在圆O上任意一点C,以C点为圆心作圆与圆O的直径AB相切于点D,两圆相交于E,F两点,求证:EF平 2020-06-30 …
如图,正方形ABCD中,点E从点A出发沿着线段AD向点D运动(点E不与点A、点D重合),同时,点F 2020-07-15 …
探索与证明:如图,四边形ABCD是正方形,点E是BC上的中点,EF⊥AE于点E,且EF交正方形外角 2020-07-21 …
(2014•明溪县模拟)读我国西南某地区等高线图,回答问题.(1)A点的海拔是米;山顶E与A点的相 2020-07-25 …
如何求证C,D,E,F四点共圆.以知:圆1与圆2相交与点A,B,点P在BA的延长线上,割线PCD交 2020-07-31 …
三角形ABC内切圆I与AB.AC切于E.F两点,BI.CI分别交EF与N.M两点,求证BEMI四点 2020-07-31 …
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)过点p(1,3/2),离心率e=1/2 2020-08-01 …