早教吧作业答案频道 -->数学-->
如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P为对称轴上一动点,求△APC周长的最小值;(3)设D为抛物线上一点
题目详情
如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.

(1)求抛物线的函数表达式;
(2)设P为对称轴上一动点,求△APC周长的最小值;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为______.

(1)求抛物线的函数表达式;
(2)设P为对称轴上一动点,求△APC周长的最小值;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为______.
▼优质解答
答案和解析
(1)如图,∵AB=2,对称轴为直线x=2.
∴点A的坐标是(1,0),点B的坐标是(3,0).
∵抛物线y=x2+bx+c与x轴交于点A,B,
∴1、3是关于x的一元二次方程x2+bx+c=0的两根.
由韦达定理,得
1+3=-b,1×3=c,
∴b=-4,c=3,
∴抛物线的函数表达式为y=x2-4x+3;
(2)如图1,连接AC、BC,BC交对称轴于点P,连接PA.
由(1)知抛物线的函数表达式为y=x2-4x+3,A(1,0),B(3,0),
∴C(0,3),
∴BC=
=3
,AC=
=
.
∵点A、B关于对称轴x=2对称,
∴PA=PB,
∴PA+PC=PB+PC.
此时,PB+PC=BC.
∴点P在对称轴上运动时,(PA+PC)的最小值等于BC.
∴△APC的周长的最小值=AC+AP+PC=AC+BC=3
+
;
(3)如图2,根据“菱形ADBE的对角线互相垂直平分,抛物线的对称性”得到点D是抛物线y=x2-4x+3的顶点坐标,即(2,-1),
当E、D点在x轴的上方,即DE∥AB,AE=AB=BD=DE=2,此时不合题意,
故点D的坐标为:(2,-1).
故答案是:(2,-1).
∴点A的坐标是(1,0),点B的坐标是(3,0).
∵抛物线y=x2+bx+c与x轴交于点A,B,
∴1、3是关于x的一元二次方程x2+bx+c=0的两根.
由韦达定理,得

1+3=-b,1×3=c,
∴b=-4,c=3,
∴抛物线的函数表达式为y=x2-4x+3;
(2)如图1,连接AC、BC,BC交对称轴于点P,连接PA.
由(1)知抛物线的函数表达式为y=x2-4x+3,A(1,0),B(3,0),
∴C(0,3),

∴BC=
32+32 |
2 |
32+12 |
10 |
∵点A、B关于对称轴x=2对称,
∴PA=PB,
∴PA+PC=PB+PC.
此时,PB+PC=BC.
∴点P在对称轴上运动时,(PA+PC)的最小值等于BC.
∴△APC的周长的最小值=AC+AP+PC=AC+BC=3
2 |
10 |
(3)如图2,根据“菱形ADBE的对角线互相垂直平分,抛物线的对称性”得到点D是抛物线y=x2-4x+3的顶点坐标,即(2,-1),
当E、D点在x轴的上方,即DE∥AB,AE=AB=BD=DE=2,此时不合题意,
故点D的坐标为:(2,-1).
故答案是:(2,-1).
看了 如图,已知抛物线y=x2+b...的网友还看了以下:
车窗抛物的英语短文!说下原因和后果解决办法 2020-03-29 …
拱桥抛物线数学问题一抛物线形拱桥跨度为26根号2米,拱顶离水面6.5米,一竹排上载有一宽4米,高6 2020-04-27 …
骰子概率问题一个骰子被连抛9次,求平均出现连续的5,6这两个数字的次数.比如9次抛出的数字是5,6 2020-05-13 …
抛物线真是抛物的线吗?抛物的线中的x与y的关系式一定的吗还是有几种? 2020-05-17 …
证明,无论p取任何实数,抛物线y=x^2+(p+1)x+1p/2+1/4都通过一个定点,而且这些抛 2020-05-23 …
抛物线数学题,求抛物线y2=4x(y的平方等于4倍x)与直线y=x-3所围成的平面图形的面积这是专 2020-06-07 …
已知抛物线y=(1-a)x2+8x+b的图象的一部分如图所示,抛物的顶点在第一象限,且经过点A(0 2020-06-14 …
关于抛物的公式 2020-07-20 …
先确定下列抛物的开口方向,对称轴及顶点再描点画图:(1)y=-3X^2+12X-3;(2)y=4X^ 2020-11-01 …
求解一道求概率或者期望的数学题,我不是数学帝较真可耻两个硬币一个红色一个蓝色都是一面写着100一面写 2020-11-03 …