早教吧作业答案频道 -->其他-->
(1)18世纪的时候,欧拉通过研究,发现凸多面体的面数F、顶点数V和棱数E满足一个等式关系.请你研究你熟悉的一些几何体(如三棱锥、三棱柱、正方体…),归纳出F、V、E之间的关系等
题目详情
(1)18世纪的时候,欧拉通过研究,发现凸多面体的面数F、顶点数V和棱数E满足一个等式关系.请你研究你熟悉的一些几何体(如三棱锥、三棱柱、正方体…),归纳出F、V、E之间的关系等式:______;
(2)运用你得出的关系式研究如下问题:一个凸多面体的各个面都是三角形,则它的面数F可以表示为顶点数V的函数,此函数关系式为______.
(2)运用你得出的关系式研究如下问题:一个凸多面体的各个面都是三角形,则它的面数F可以表示为顶点数V的函数,此函数关系式为______.
多面体 | 面数(F) | 顶点数(V) | 棱数(E) |
三棱锥 | 4 | 4 | 6 |
三棱柱 | 5 | 6 | … |
正方体 | … | … | … |
… | … | … | … |
▼优质解答
答案和解析
(1)凸多面体的面数为F、顶点数为V和棱数为E,举例如下
①正方体:F=6,V=8,E=12,得V+F-E=8+6-12=2;
②三棱柱:F=5,V=6,E=9,得V+F-E=5+6-9=2;
③三棱锥:F=4,V=4,E=6,得V+F-E=4+4-6=2.
根据以上几个例子,猜想:凸多面体的面数F、顶点数V和棱数E满足如下关系:V+F-E=2
再通过举四棱锥、六棱柱、…等等,发现上述公式都成立.
因此归纳出一般结论:V+F-E=2
(2)一个多面体的各个面都是三角形,这个多面体的棱数E=
F,
∵V+F-E=2,
∴V+F-
F=2,
∴F=2V-4.
故答案为:V+F-E=2;F=2V-4.
①正方体:F=6,V=8,E=12,得V+F-E=8+6-12=2;
②三棱柱:F=5,V=6,E=9,得V+F-E=5+6-9=2;
③三棱锥:F=4,V=4,E=6,得V+F-E=4+4-6=2.
根据以上几个例子,猜想:凸多面体的面数F、顶点数V和棱数E满足如下关系:V+F-E=2
再通过举四棱锥、六棱柱、…等等,发现上述公式都成立.
因此归纳出一般结论:V+F-E=2
(2)一个多面体的各个面都是三角形,这个多面体的棱数E=
3 |
2 |
∵V+F-E=2,
∴V+F-
3 |
2 |
∴F=2V-4.
故答案为:V+F-E=2;F=2V-4.
看了 (1)18世纪的时候,欧拉通...的网友还看了以下:
几ˋˊ何数学题自己先把图画出来吧图:一个由点A.B.C组成的等边三角形中,点D是边AB的中点,点E 2020-05-13 …
如图,在矩形ABCD中,AB=6,AD=8,将矩形顶点B沿GF折叠,使点B落在AD上(不与A,D重 2020-05-16 …
如图,在正四棱锥P-ABCD中,PA=AB=a,点E在棱PC上.(1)问点E在何处时,PA∥平面E 2020-06-27 …
如何求证C,D,E,F四点共圆.以知:圆1与圆2相交与点A,B,点P在BA的延长线上,割线PCD交 2020-07-31 …
一个四棱锥的三视图如图所示,E为侧棱PC上一动点.(1)画出该四棱锥的直观图,并指出几何体的主要特 2020-07-31 …
已知四棱锥P-ABCD的三视图和直观图如图:(1)求四棱锥P-ABCD的体积;(2)若E是侧棱PC 2020-08-01 …
空间距离题长方形ABCD中,AB=4,BC=7,在BC边上任取一点E,把纸片沿AE折成直二面角,则 2020-08-02 …
如图,抛物线y=ax^2+bx+c与x轴交于AB两点(点A在点B左侧),与y轴交于点C(0,-3) 2020-08-03 …
如图,抛物线y=ax^2+bx+c与x轴交于AB两点(点A在点B左侧),与y轴交于点C(0,-3) 2020-08-03 …
已知四棱锥P-ABCD中,底面ABCD为正方形,PC⊥平面ABCD,AB=1,PC=2,E为侧棱PC 2020-12-23 …