早教吧作业答案频道 -->其他-->
已知数列{an}满足:a1=43,且an+1=4(n+1)an3an+n(n∈N*).(1)求1a1+2a2+…+nan的值;(2)设bn=ann(n∈N*),用数学归纳法证明:b1b2b3…bn<2.
题目详情
已知数列{an}满足:a1=
,且an+1=
(n∈N*).
(1)求
+
+…+
的值;
(2)设bn=
(n∈N*),用数学归纳法证明:b1b2b3…bn<2.
| 4 |
| 3 |
| 4(n+1)an |
| 3an+n |
(1)求
| 1 |
| a1 |
| 2 |
| a2 |
| n |
| an |
(2)设bn=
| an |
| n |
▼优质解答
答案和解析
(1)∵an+1=
,
∴
-1=
(
-1),
∵a1=
,
∴{
-1}是以
为首项,
为公比的等比数列,
∴
-1=
•(
)n−1,
∴
=1+
•(
)n−1,
∴
+
+…+
=n+
=n+1-
;
(2)证明:n=1时,b1=a1=
<2,满足题意;
设n=k时,结论成立,即b1b2b3…bk<2
,
| 4(n+1)an |
| 3an+n |
∴
| n+1 |
| an+1 |
| 1 |
| 4 |
| n |
| an |
∵a1=
| 4 |
| 3 |
∴{
| n |
| an |
| 3 |
| 4 |
| 1 |
| 4 |
∴
| n |
| an |
| 3 |
| 4 |
| 1 |
| 4 |
∴
| n |
| an |
| 3 |
| 4 |
| 1 |
| 4 |
∴
| 1 |
| a1 |
| 2 |
| a2 |
| n |
| an |
| ||||
1−
|
| 1 |
| 4n |
(2)证明:n=1时,b1=a1=
| 4 |
| 3 |
设n=k时,结论成立,即b1b2b3…bk<2
| ak+1 |
| k+1 |
看了 已知数列{an}满足:a1=...的网友还看了以下:
若数列{an}满足a1+2a2+3a3+…+nan=n(n+1)(n+2)(n∈N*),求{an} 2020-04-26 …
设数列{an}满足a1+2a2+3a3+.+nan=n(n+1)(n+2)求通项an 2020-05-16 …
高手进:高二数学题.已知数列{An}满足A1+2A2+2的平方A3+····+2的n-1次方An= 2020-05-20 …
已知数列{an}满足a1+2a2+4a3+……+2^(n-1)an=3n-2^n,(n∈N*),求 2020-07-03 …
设数列{an}满足a1+2a2+3a3+.+nan=2的n次方(n为正整数)(1)求数列{an}的 2020-07-09 …
设数列{an}满足a1+2a2=3,且对任意的n∈N*,点Pn(n,an)都有PnPn+1=(1, 2020-07-12 …
若数列{an}满足a1+2a2+3a3+…+nan=n(n+1)(n+2)(n∈N*),求{an} 2020-07-14 …
已知数列{an}为公差不为零的等差数列,其前n项和为Sn,满足S5-2a2=25,且a1,a4,a 2020-07-27 …
紧急若数列[an]满足a1+2a2+3a3+..+nan=1/4[(3^n)(2n-1)+1](n 2020-07-29 …
设数列{an}满足a1+2a2+3a3+...+nan=n^2,求数列{an}的通项公式 2020-07-30 …