早教吧作业答案频道 -->数学-->
用数学归纳法证明证明1/(n+1)+1/(n+2)+.+1/(3n+1)≥1(n∈N)
题目详情
用数学归纳法证明
证明1/(n+1)+1/(n+2)+.+1/(3n+1)≥1 (n∈N)
证明1/(n+1)+1/(n+2)+.+1/(3n+1)≥1 (n∈N)
▼优质解答
答案和解析
证明:
当n=1时,1/2 + 1/3 +1/4=13/12>1,结论成立.
令An=1/(n+1)+1/(n+2)+.+1/(3n+1)
假设当n=k时结论成立,即
Ak=1/(k+1)+1/(k+2)+…+1/(3k+1)>1
我们来证明n=k+1时,结论也成立
因为
A(k+1)=1/(k+2)+1/(k+3)+…+1/(3k+4)
=[1/(k+1)+1/(k+2)+…+1/(3k+1)]+1/(3k+2)+1/(3k+3)+1/(3k+4)-1/(k+1)
=Ak +1/(3k+2)+1/(3k+3)+1/(3k+4)-1/(k+1)
下面我们来证明1/(3k+2)+1/(3k+3)+1/(3k+4)-1/(k+1)>0 ①
①式可化左端可化为
1/(3k+3-1)+1/(3k+3)+1/(3k+3+1)-3/(3k+3)
=1/(3k+3-1)+1/(3k+3+1)-2/(3k+3) ②
令a=3k+3
若1/(a-1) +1/(a+1)>2/a (其中a>1) 成立
则②>0
1/(a-1) +1/(a+1)=2a/(a²-1)>2a/a²=2/a
这样1/(a-1) +1/(a+1)>2/a成立,从而②式大于0,即①式成立,从而
A(k+1)>Ak>1
当n=1时,1/2 + 1/3 +1/4=13/12>1,结论成立.
令An=1/(n+1)+1/(n+2)+.+1/(3n+1)
假设当n=k时结论成立,即
Ak=1/(k+1)+1/(k+2)+…+1/(3k+1)>1
我们来证明n=k+1时,结论也成立
因为
A(k+1)=1/(k+2)+1/(k+3)+…+1/(3k+4)
=[1/(k+1)+1/(k+2)+…+1/(3k+1)]+1/(3k+2)+1/(3k+3)+1/(3k+4)-1/(k+1)
=Ak +1/(3k+2)+1/(3k+3)+1/(3k+4)-1/(k+1)
下面我们来证明1/(3k+2)+1/(3k+3)+1/(3k+4)-1/(k+1)>0 ①
①式可化左端可化为
1/(3k+3-1)+1/(3k+3)+1/(3k+3+1)-3/(3k+3)
=1/(3k+3-1)+1/(3k+3+1)-2/(3k+3) ②
令a=3k+3
若1/(a-1) +1/(a+1)>2/a (其中a>1) 成立
则②>0
1/(a-1) +1/(a+1)=2a/(a²-1)>2a/a²=2/a
这样1/(a-1) +1/(a+1)>2/a成立,从而②式大于0,即①式成立,从而
A(k+1)>Ak>1
看了 用数学归纳法证明证明1/(n...的网友还看了以下:
1.已知an=n/n^2+156(n∈N),则在数列{an}的最大项为2.数列{an}的通项为an= 2020-03-30 …
数列1/n*(n+1)的前n项和Sn=(1/1*2)+(1/2*3)+.1/n*(n+1),求Sn 2020-05-14 …
1)已知数列{an}满足a1=1,n≥2时,an-1-an=2an-1an,求通项公式an2)已知 2020-06-11 …
在数列{an}中,a1=1/3,并且对任意n属于N*,n≥2都有an×an-1=an-1-an成立 2020-07-09 …
若正整数n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和3 2020-07-17 …
这个数列是收敛还是发散?Un=[1+(2/3)^n]/n如果Un=[(-1)^n+(2/3)^n] 2020-07-31 …
设无穷数列{an},如果存在常数A,对于任意给定的正数ɛ(无论多小),总存在正整数N,使得n>N时 2020-08-02 …
已知数列{an}满足a1=1,a2=3,且an+2=(1+2|cosnπ2|)an+|sinnπ2| 2020-10-31 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
这道题的解题过程是?对数列{an}(n∈N对数列{an}(n∈N+,an∈N+),令bk为a1,a2 2020-12-31 …