早教吧作业答案频道 -->数学-->
用数学归纳法证明1∕n+1∕(n+1)+1∕(n+2)+…+1∕(n的平方)〉1,其中n〉1
题目详情
用数学归纳法证明1∕n+1∕(n+1)+1∕(n+2)+…+1∕(n的平方)〉1,其中n〉1
▼优质解答
答案和解析
n=2略
n=k时有1/k+1/(k+1)+……+1/k²>1
k≥2
令a=1/k+1/(k+1)+……+1/k²>1
则n=k+1
1/(k+1)+1/(k+2)+……+1/(k+1)²
=a-1/k+1/(k²+1)+……+1/(k+1)²
因为1/(k²+1)>1/(k+1)²
1/(k²+2)>1/(k+1)²
……
所以a-1/k+1/(k²+1)+……+1/(k+1)²>a-1/k+1/(k+1)²+……+1/(k+1)²
=a-1/k+(2k+1)*1/(k+1)²
=a+(2k²+k-k²-2k-1)/k(k+1)²
=a+[(k-1/2)²-5/4]k(k+1)²
k≥2
所以a+[(k-1/2)²-5/4]k(k+1)²>a>1
所以n=k+1
1/(k+1)+1/(k+2)+……+1/(k+1)²>1
综上,……
n=k时有1/k+1/(k+1)+……+1/k²>1
k≥2
令a=1/k+1/(k+1)+……+1/k²>1
则n=k+1
1/(k+1)+1/(k+2)+……+1/(k+1)²
=a-1/k+1/(k²+1)+……+1/(k+1)²
因为1/(k²+1)>1/(k+1)²
1/(k²+2)>1/(k+1)²
……
所以a-1/k+1/(k²+1)+……+1/(k+1)²>a-1/k+1/(k+1)²+……+1/(k+1)²
=a-1/k+(2k+1)*1/(k+1)²
=a+(2k²+k-k²-2k-1)/k(k+1)²
=a+[(k-1/2)²-5/4]k(k+1)²
k≥2
所以a+[(k-1/2)²-5/4]k(k+1)²>a>1
所以n=k+1
1/(k+1)+1/(k+2)+……+1/(k+1)²>1
综上,……
看了 用数学归纳法证明1∕n+1∕...的网友还看了以下:
已知向量a=(2,1),b=(x,y).(1)若x∈{-1,0,1,2},y∈{-1,0,1},求向 2020-03-30 …
五(2)班21名同学跳高成绩如下(单位:米)1.2、1.1、0.9、1.2、1.4、0.95、1. 2020-04-27 …
几道数学计算题(请写过程)第一题1/2+(1/3+2/3)+(1/4+2/4+3/4)+…+(1/ 2020-05-16 …
1.已知x^2-4x+1=0,则x^4+1/x^4=2.如果方程a/(x-2)+3=(1-x)/( 2020-06-25 …
已知数列{an}的通项公式为an=2^(n-1)+1则a1Cn^0+a2Cn^1+a3Cn^2+. 2020-07-09 …
一、我们知道1/1×2=1/1-1/2=1/2,1/2×3=1/2-1/3=1/6验证:1/3×4 2020-07-17 …
一位同学发现:o×1×2×3+1=1=1^21×2×3×4+1=25=5^22×3×4×5+1=1 2020-07-17 …
1、2/3÷1/2-1/4×2/52、2-6/13÷9/26-2/33、2/9+1/2÷4/5+3 2020-07-18 …
由下列各式:1>1/2,1+1/2+1/3>1有下列各式:1>1/2;1+1/2+1/3>1;1+1 2020-10-30 …
计算一道数学题,(1+1/2)×(1+1/3)×(1+1/4)×(1+1/5)×(1+1/6)×(1 2020-11-30 …