早教吧作业答案频道 -->其他-->
求I(n)=不定积分(sin^n(x)dx)的递推式I(n)=f(I(n-1))
题目详情
求I(n)=不定积分(sin^n(x)dx) 的递推式I(n)=f(I(n-1))
▼优质解答
答案和解析
I = ∫(sinx)^ndx = ∫(sinx)^(n-2)(sinx)^2dx
= ∫(sinx)^(n-2)[1-(cosx)^2]dx
= ∫(sinx)^(n-2)dx - ∫(sinx)^(n-2)cosxdsinx
= I - [1/(n-1)]∫cosxd[(sinx)^(n-1)]
= I - [1/(n-1)](sinx)^(n-1)cosx
+ [1/(n-1)]∫[(sinx)^(n-1)](-sinx)dx
= I - [1/(n-1)](sinx)^(n-1)cosx -[1/(n-1)]I,
[n/(n-1)]I = - [1/(n-1)](sinx)^(n-1)cosx + I,
得递推公式 I = -(1/n)(sinx)^(n-1)cosx + [(n-1)/n] I.
= ∫(sinx)^(n-2)[1-(cosx)^2]dx
= ∫(sinx)^(n-2)dx - ∫(sinx)^(n-2)cosxdsinx
= I - [1/(n-1)]∫cosxd[(sinx)^(n-1)]
= I - [1/(n-1)](sinx)^(n-1)cosx
+ [1/(n-1)]∫[(sinx)^(n-1)](-sinx)dx
= I - [1/(n-1)](sinx)^(n-1)cosx -[1/(n-1)]I,
[n/(n-1)]I = - [1/(n-1)](sinx)^(n-1)cosx + I,
得递推公式 I = -(1/n)(sinx)^(n-1)cosx + [(n-1)/n] I.
看了 求I(n)=不定积分(sin...的网友还看了以下:
n(n+1)(n+2)最大公约数(n+1)(n+2)(n+3)(n+4)+1=分解公因式要理由和步骤 2020-03-30 …
若n(n∈N,n>1)不能被小于根号n的所有质数整除,则n为质数.谁证明下.这次有分加了...括号 2020-05-17 …
在(n+1)=n^2+2n+1中,当n=1,2,3……这些正整数时,可以得到n个等式将这些等式在( 2020-06-10 …
求教微积分的题题证明数列an=(1+1/n)n+1严格单调减少有下界,并求liman证明不等式(1 2020-06-10 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
高中数列由递推求通项已知a1=1/3;a2=1/3;an=(1-2M)*N*N/(2*N*N-4* 2020-07-11 …
若n(n∈N,n>1)不能被小于根号n的所有质数整除,则n为质数.谁证明下.这次有分加了...括号 2020-08-01 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
分解因式谁能给我讲解下!a^n+b^n=(a+b)([a^{n-1}]-[a^{n-2}]*b+[a 2020-11-20 …
如何推算出以下数学公式:N乘N加D的和分之D等于N分之一减去N加D的和分之一N乘N加D的和分之一等于 2020-12-17 …