早教吧作业答案频道 -->其他-->
已知函数f(x)=ax2-(2a+1)x+lnx,a∈R,(I)讨论函数f(x)的单调性;(II)设a<-1,证明:对任意x1,x2∈(2,+∞),|f(x1)-f(x2)|≥2|x1-x2|.
题目详情
已知函数 f(x)=ax2-(2a+1)x+lnx,a∈R,
(I)讨论函数f(x)的单调性;
(II)设a<-1,证明:对任意x1,x2∈(2,+∞),|f(x1)-f(x2)|≥2|x1-x2|.
(I)讨论函数f(x)的单调性;
(II)设a<-1,证明:对任意x1,x2∈(2,+∞),|f(x1)-f(x2)|≥2|x1-x2|.
▼优质解答
答案和解析
(Ⅰ)函数的定义域为(0,+∞).
f′(x)=2ax-(2a+1)+
=
=
,
①若a=0,则f′(x)=
,当0<x<1时,f′(x)>0,f(x)单调递增,当x>1时,f′(x)<0,f(x)单调递减;
②若0<a<
,令f′(x)>0,得0<x<1或x>
,令f′(x)<0,得1<x<
,
所以f(x)在(0,1),(
,+∞)上递增,在(1,
)上递减;
③若a=
,f′(x)=
≥0,f(x)在(0,+∞)上单调递增;
令f′(x)>0,得0<x<
,或x>1,令f′(x)<0,得
<x<1,
所以f(x)在(0,
),(1,+∞)上单调递增,在(
,1)上单调递减;
⑤若a<0,令f′(x)>0,得0<x<1,令f′(x)<0,得x>1,
所以f(x)在(0,1)上递增,在(1,+∞)上递减;
综上,a=0时,f(x)在(0,1)上单调递增,在(1,+∞)上递减;0<a<
时,f(x)在(0,1),(
,+∞)上递增,在(1,
)上递减;
a=
时,f(x)在(0,+∞)上单调递增;a>
时,f(x)在(0,
),(1,+∞)上单调递增,在(
,1)上单调递减;
a<0时,f(x)在(0,1)上递增,在(1,+∞)上递减;
(Ⅱ)|f(x1)-f(x2)|≥2|x1-x2|,即|
|≥2,所以有|f′(x)|≥2
f′(x)=2ax-(2a+1)+
1 |
x |
2ax2-(2a+1)x+1 |
x |
(2ax-1)(x-1) |
x |
①若a=0,则f′(x)=
-(x-1) |
x |
②若0<a<
1 |
2 |
1 |
2a |
1 |
2a |
所以f(x)在(0,1),(
1 |
2a |
1 |
2a |
③若a=
1 |
2 |
(x-1)2 |
x |
令f′(x)>0,得0<x<
1 |
2a |
1 |
2a |
所以f(x)在(0,
1 |
2a |
1 |
2a |
⑤若a<0,令f′(x)>0,得0<x<1,令f′(x)<0,得x>1,
所以f(x)在(0,1)上递增,在(1,+∞)上递减;
综上,a=0时,f(x)在(0,1)上单调递增,在(1,+∞)上递减;0<a<
1 |
2 |
1 |
2a |
1 |
2a |
a=
1 |
2 |
1 |
2 |
1 |
2a |
1 |
2a |
a<0时,f(x)在(0,1)上递增,在(1,+∞)上递减;
(Ⅱ)|f(x1)-f(x2)|≥2|x1-x2|,即|
f(x1)-f(x2) |
x1-x2 |
看了 已知函数f(x)=ax2-(...的网友还看了以下:
1.设随机变量X~B(100.0.2),应用中心极限定理计算P(16≤X≤24)=?2.设随机变量 2020-05-13 …
一道数学函数题已知f(x)=a-2/(2^x+1)(x∈R)为奇函数(1)求证:f(x)为R上的增 2020-05-17 …
已知函数f(x)=(lnx)/x的图像为曲线C,函数g(x)=1/2*a*x+b的图像为直线l.( 2020-06-04 …
若函数f(x)=4^(x-1/2)-a*2^x+27/2在区间[0,2]上的最大值为9,求实数a的 2020-07-17 …
高分求解几道概率论与数理统计的题,答的好的追加100分1,2题是填空,1.设随机变量X服从参数θ= 2020-08-02 …
1.已知,y=f[(3x-2)/(3x+2)],f'(x)=arctan(x^2),那么dy/dx( 2020-10-31 …
高三学渣悔改求学.设f(x)的定义域为D,若f(x)满足条件:存在[a,b]属于D使为什么在x=a时 2020-11-04 …
2道积分题,本人不才,会的帮帮忙!1.若f′(sinx)=cos²x则f(x)=2.设2∫(0到1) 2020-11-15 …
一共5题1.一颗均匀骰子重复掷10次,设X表示点3出现的次数,则X的分布律P(X=k)=2.设F(x 2020-11-25 …
已知函数f(x)=ax3+x2+bx(a,b∈R,且F(x)=f(x)+3ax2+2x+b为奇函数. 2020-12-08 …