早教吧作业答案频道 -->数学-->
设函数f(x)连续,且f'(0)>0,则存在A>0,使得f(x)在(0,A)内单调增加.错在哪里?尽量说详细些,
题目详情
设函数f(x)连续,且f'(0)>0,则存在A>0,使得f(x)在(0,A)内单调增加.错在哪里?尽量说详细些,
▼优质解答
答案和解析
如果f'(x)连续,则结论成立.否则可能不成立.
f(x)=x+x^2sin(1/x),当x不为0时;f(0)=0,易知f'(0)=1>0,但
f'(x)=1+2xsin(1/x)-cos(1/x),f'(1/kpi)=1-(-1)^k,在k趋于无穷的过程中,
f'(x)总有大于0的点,也有小于0的点,在0的任一个右邻域内f(x)不是单调的.
f(x)=x+x^2sin(1/x),当x不为0时;f(0)=0,易知f'(0)=1>0,但
f'(x)=1+2xsin(1/x)-cos(1/x),f'(1/kpi)=1-(-1)^k,在k趋于无穷的过程中,
f'(x)总有大于0的点,也有小于0的点,在0的任一个右邻域内f(x)不是单调的.
看了 设函数f(x)连续,且f'(...的网友还看了以下:
设函数f(x)=(x+a)/(x+b)(a>b>0),求f(x)的单调区间,并证明f(x)在其单调区 2020-03-30 …
求函数f(x)=x+a/x(a>0),x∈(0,+∞)的单调区间.点评一般结论:函数f(x)=ax 2020-06-08 …
已知f(x)=a^x-1/a^x(其中a>1,x∈R)(1)判断并证明f(x)的奇偶性与单调性已知 2020-06-14 …
已知函数f(x)=1/a-1/x(a>0,x>0).(1)求证:f(x)在(0,正无穷)上是单调递 2020-06-14 …
已知函数f(x)=x-a/x-2lnx,a∈R.(1)函数f(x)的单调性(2)偌f(x)有两已知 2020-07-13 …
设f(x)是定义在R上的单调增函数,证明集合{x|对任意a>0,f(x+a)>f(x-a)}设f( 2020-07-29 …
求导问题若f(x)在点x=a的邻域内有定义,且除去点x=a外恒有[f(x)-f(a)]/(x-a) 2020-07-31 …
设函数f(x)=x+a/x+b(a>b>0),求f(x)的单调区间,并证明f(x)在其单调区间上的 2020-08-01 …
函数y=2|x-3|在a,a+1上为单调函数,则a的取值范围若奇函数f(x)与偶函数g(x)之和为 2020-08-02 …
高考已知函数f(x)=a(x-1)/x^2,其中a>0求函数f(x)的单调区间.若直线x-y-1= 2020-08-02 …