早教吧作业答案频道 -->其他-->
(2007•辽宁)已知函数f(x)=2t2-2(ex+x)t+e2x+x2+1,g(x)=12f′(x).(I)证明:当t<22时,g(x)在R上是增函数;(II)对于给定的闭区间[a,b],试说明存在实数k,当t>k时,g(x)在闭
题目详情
(2007•辽宁)已知函数f(x)=2t2-2(ex+x)t+e2x+x2+1,g(x)=
f′(x).
(I)证明:当t<2
时,g(x)在R上是增函数;
(II)对于给定的闭区间[a,b],试说明存在实数k,当t>k时,g(x)在闭区间[a,b]上是减函数;
(III)证明:f(x)≥
.
1 |
2 |
(I)证明:当t<2
2 |
(II)对于给定的闭区间[a,b],试说明存在实数k,当t>k时,g(x)在闭区间[a,b]上是减函数;
(III)证明:f(x)≥
3 |
2 |
▼优质解答
答案和解析
(I)证明:由题设易得g(x)=e2x-t(ex-1)+x,g'(x)=2e2x-tex+1.又由2ex+e-x≥2
,且t<2
得t<2ex+e-x,
tex<2e2x+1,即g'(x)=2e2x-tex+1>0.由此可知,g(x)在R上是增函数.
(II)因为g'(x)<0是g(x)为减函数的充分条件,所以只要找到实数k,使得t>k时g'(x)=2e2x-tex+1<0,即t>2ex+e-x在闭区间[a,b]上成立即可.因为y=2ex+e-x在闭区间[a,b]上连续,故在闭区间[a,b]上有最大值,设其为k,于是在t>k时,g'(x)<0在闭区间[a,b]上恒成立,即g(x)在闭区间[a,b]上为减函数.
(III)设F(t)=2t2-2(ex+x)t+e2x+x2+1,即F(t)=2(t-
)2+
(ex-x)2+1,
易得F(t)≥
(ex-x)2+1.令H(x)=ex-x,则H'(x)=ex-1,易知H'(0)=0.当x>0时,H'(0)>0;当x<0时,H'(0)<0.故当x=0时,H(x)取最小值,H(0)=1.所以
(ex-x)2+1≥
,
于是对任意的x,t,都有F(t)≥
,即f(x)≥
.
(I)证明:由题设易得g(x)=e2x-t(ex-1)+x,g'(x)=2e2x-tex+1.又由2ex+e-x≥2
2 |
2 |
tex<2e2x+1,即g'(x)=2e2x-tex+1>0.由此可知,g(x)在R上是增函数.
(II)因为g'(x)<0是g(x)为减函数的充分条件,所以只要找到实数k,使得t>k时g'(x)=2e2x-tex+1<0,即t>2ex+e-x在闭区间[a,b]上成立即可.因为y=2ex+e-x在闭区间[a,b]上连续,故在闭区间[a,b]上有最大值,设其为k,于是在t>k时,g'(x)<0在闭区间[a,b]上恒成立,即g(x)在闭区间[a,b]上为减函数.
(III)设F(t)=2t2-2(ex+x)t+e2x+x2+1,即F(t)=2(t-
ex+x |
2 |
1 |
2 |
易得F(t)≥
1 |
2 |
1 |
2 |
3 |
2 |
于是对任意的x,t,都有F(t)≥
3 |
2 |
3 |
2 |
看了 (2007•辽宁)已知函数f...的网友还看了以下:
设集合A={x|1<x<2},B={x|x<a}满足A B,则实数a的取值范围是1.设集合A={x 2020-04-06 …
一道数学微分方程的题假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x) 2020-05-13 …
关于吸热反应X+Y=Z+W(Ex、EY、Ez、Ew分别代表X、Y、Z、W所具有的能量),以下说法一 2020-05-21 …
1.设P={x|x<1},Q={x|x2<4},则P∩Q()A.{x|-1<x<2}B.{x1.设 2020-06-05 …
1.已知a、b、c、d满足a<-2<b<0<c<2<d,且|a+2|=|b+2|,|2-c|=|2 2020-06-10 …
若正数a,b,c满足不等式组11c/6<a+b<2c3a/2<b+c<5a/35b/2<a+c<1 2020-06-12 …
(1)阅读理解我们知道,正方形面积越大,其边长也越大,即如果0<a<b,那么0<√a<√b因为1² 2020-07-20 …
定义在R上的函数f(x)满足f(x)+f′(x)<e,f(0)=e+2(其中e为自然对数的底数), 2020-08-01 …
(2014•黄山一模)已知e是自然对数的底数,函数f(x)=ex+x-2的零点为a,函数g(x)= 2020-08-02 …
双曲线(标准形式)与直线y=2x有交点,则为什么会有-b/a<2<b/a? 2020-08-02 …