早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知抛物线C1:y=a(x-2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点A的横坐标是-1.(1)求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物

题目详情
如图,已知抛物线C1:y=a(x-2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点A的横坐标是-1.

(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向左平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点A成中心对称时,求C3的解析式y=a(x-h)2+k;
(3)如图(2),点Q是x轴负半轴上一动点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、E为顶点的三角形是直角三角形时,求顶点N的坐标.
▼优质解答
答案和解析
(1)由抛物线C1:y=a(x-2)2-5得顶点P的坐标为(2,-5);
∵点A(-1,0)在抛物线C1上,
∴a(-3)2-5=0,
解得:a=
5
9

(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G,
∵点P、M关于点A成中心对称,
∴PM过点A,且PA=MA,
∴△PAH≌△MAG,
∴MG=PH=5,AG=AH=3.
∴顶点M的坐标为(-4,5),
∵抛物线C2与C1关于x轴对称,抛物线C3由C2平移得到,
∴抛物线C3的表达式y=−
5
9
(x+4)2+5.
(3)∵抛物线C4由C1绕x轴上的点Q旋转180°得到,
∴顶点N、P关于点Q成中心对称,
由(2)得点N的纵坐标为5,
设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PR⊥NG于R,
∵旋转中心Q在x轴上,
∴EF=AB=2AH=6,
∴EG=3,点E坐标为(m-3,0),H坐标为(2,0),R坐标为(m,-5),
根据勾股定理,得PN2=NR2+PR2=m2-4m+104,PE2=PH2+HE2=m2-10m+50,NE2=52+32=34,
①当∠PNE=90°时,PN2+NE2=PE2
解得m=
44
3
,即N点坐标为(
44
3
,5).
②当∠PEN=90°时,PE2+NE2=PN2
解得m=
10
3
,即N点坐标为(
10
3
,5).
③∵PN>NR=10>NE,
∴∠NPE≠90°;
综上所得,当N点坐标为(
44
3
,5)或(
10
3
,5)时,以点P、N、E为顶点的三角形是直角三角形.