早教吧作业答案频道 -->数学-->
已知函数f(x)=kex+b(k,b∈R)(其中e是自然对数的底数)的导数为f′(x),f′(1)+f(1)=2e,且f(x)在x=1处的切线过原点.(1)求函数f(x)的解析式;(2)设g(x)=x2+ax+1(a∈R),
题目详情
已知函数f(x)=kex+b(k,b∈R)(其中e是自然对数的底数)的导数为f′(x),f′(1)+f(1)=2e,且f(x)在x=1处的切线过原点.
(1)求函数f(x)的解析式;
(2)设g(x)=x2+ax+1(a∈R),若对∀x1,x2∈[0,2],x1>x2,均有|f(x1)-f(x2)|>g(x1)-g(x2),求实数a的取值范围.
(1)求函数f(x)的解析式;
(2)设g(x)=x2+ax+1(a∈R),若对∀x1,x2∈[0,2],x1>x2,均有|f(x1)-f(x2)|>g(x1)-g(x2),求实数a的取值范围.
▼优质解答
答案和解析
(1)函数f(x)=kex+b的导数为f′(x)=kex,
f(x)在x=1处的切线斜率为ke,
切点为(1,ke+b),即有ke=ke+b,
解得b=0,
由f′(1)+f(1)=2e,
即为ke+ke+b=2e,
解得k=1,
则f(x)的解析式为f(x)=ex;
(2)由f(x)在[0,2]递增,且x1>x2,
可得|f(x1)-f(x2)|=f(x1)-f(x2),
|f(x1)-f(x2)|>g(x1)-g(x2),
即为f(x1)-g(x1)>f(x2)-g(x2),
可令h(x)=f(x)-g(x),即有h(x)在[0,2]递增,
由h(x)=ex-x2-ax-1,h′(x)=ex-2x-a,
即有h′(x)≥0在[0,2]恒成立.
即为a≤ex-2x的最小值.
由ex-2x的导数为ex-2,当ln2当0≤x可得x=ln2时取得最小值,且为2-2ln2.
则a≤2-2ln2.
即有a的取值范围是(-∞,2-2ln2].
f(x)在x=1处的切线斜率为ke,
切点为(1,ke+b),即有ke=ke+b,
解得b=0,
由f′(1)+f(1)=2e,
即为ke+ke+b=2e,
解得k=1,
则f(x)的解析式为f(x)=ex;
(2)由f(x)在[0,2]递增,且x1>x2,
可得|f(x1)-f(x2)|=f(x1)-f(x2),
|f(x1)-f(x2)|>g(x1)-g(x2),
即为f(x1)-g(x1)>f(x2)-g(x2),
可令h(x)=f(x)-g(x),即有h(x)在[0,2]递增,
由h(x)=ex-x2-ax-1,h′(x)=ex-2x-a,
即有h′(x)≥0在[0,2]恒成立.
即为a≤ex-2x的最小值.
由ex-2x的导数为ex-2,当ln2
则a≤2-2ln2.
即有a的取值范围是(-∞,2-2ln2].
看了 已知函数f(x)=kex+b...的网友还看了以下:
设f(x)=lnx−x−ax(其中a>0),g(x)=2(x−1)−(x2+1)lnx.(1)当x 2020-05-13 …
一.已知函数f(x)=a^lg(2-ax)(a>0且a≠1)在定义域[0,1]上是减函数,则a的取 2020-06-04 …
设函数f(x)=|x|/(x+2)-ax²,其中a∈R1.当a=2时,求函数f(x)的零点2.设函 2020-06-08 …
设函数f(x)=√x^2+1.—ax,其中a>0,求a的取值范围,使函数f(x)在区间[0,+∞) 2020-06-20 …
对于微分方程y’’+3y’+2y=e^(-x),利用待定系数法求其特解y*时,下面特解设法正确的是 2020-07-08 …
设A,B是n阶方阵,则下列四个结论成立的是()A.若A2=0,则A=0B.若A2=A,则A=0,或 2020-07-09 …
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是() 2020-07-31 …
设AX=0是非齐次线性方程组AX=b对应的齐次线性方程组,则()A.AX=0只有零解时,AX=b有 2020-07-31 …
非齐次线性方程组解的问题设AX=b为n元线性方程组,其导出组为AX=0,r(A)=r,η是AX=b 2020-08-02 …
设函数f(x)=根号下x的平方+1-ax其中a大于等于1证明f(x)在区间[0,+无穷)上是单调函数 2020-11-22 …