早教吧作业答案频道 -->数学-->
设函数f(x)=√x^2+1.—ax,其中a>0,求a的取值范围,使函数f(x)在区间[0,+∞)上是单调函数.设函数f(x)=√x^2+1.—ax,其中a>0,求a的取值范围,使函数f(x)在区间[0,+∞)上是单调函数.求详解,
题目详情
设函数f(x)=√x^2+1.—ax,其中a>0,求a的取值范围,使函数f(x)在区间[0,+∞)上是单调函数.
设函数f(x)=√x^2+1.—ax,其中a>0,求a的取值范围,使函数f(x)在区间[0,+∞)上是单调函数.求详解,
设函数f(x)=√x^2+1.—ax,其中a>0,求a的取值范围,使函数f(x)在区间[0,+∞)上是单调函数.求详解,
▼优质解答
答案和解析
f(x)=√(x²+1) -ax
f'(x)=1/[2√(x²+1)]·(x²+1)'-a
=x/√(x²+1) -a
分两种情况.
(1)若f(x)在[0,+∞)上单调增,
则f'(x)≥0对于x∈[0,+∞)恒成立,
即a≤x/√(x²+1),x∈[0,+∞)
从而 a≤[x/√(x²+1)]min=0
与条件 a>0矛盾;
(2)若f(x)在[0,+∞)上单调减,
则f'(x)≤0对于x∈[0,+∞)恒成立,
即a≥x/√(x²+1),x∈[0,+∞)
易求得,x/√(x²+1)∈[0,1),x∈[0,+∞)
于是a≥1
f'(x)=1/[2√(x²+1)]·(x²+1)'-a
=x/√(x²+1) -a
分两种情况.
(1)若f(x)在[0,+∞)上单调增,
则f'(x)≥0对于x∈[0,+∞)恒成立,
即a≤x/√(x²+1),x∈[0,+∞)
从而 a≤[x/√(x²+1)]min=0
与条件 a>0矛盾;
(2)若f(x)在[0,+∞)上单调减,
则f'(x)≤0对于x∈[0,+∞)恒成立,
即a≥x/√(x²+1),x∈[0,+∞)
易求得,x/√(x²+1)∈[0,1),x∈[0,+∞)
于是a≥1
看了 设函数f(x)=√x^2+1...的网友还看了以下:
已知奇数f(x)的定义域为(-∞,0)U(0,+∞),且f(x)在(0,+∞)上是减函数,f(1) 2020-05-19 …
若函数f(x)在x=a处的导函数值为A(aA不等于0),函数F(x)=f(x)-A^2x^2满足F 2020-05-21 …
已知函数f(x)=alog2|x|+1(a≠0),定义函数F(x)=f(x),x>0-f(x),x 2020-06-12 …
设函数f(x)=a1sin(x+a1)+a2sin(x+a2)+.+ansin(x+an),其中a 2020-07-18 …
1.确定a,b的值,使函数(分段函数)f(x)=1/x·sin2x,(x<0);f(x)=a,x= 2020-07-22 …
连续函数!设f(x)={sinbx/b,x≠0a,x=0(a,b为常数)为连续函数,则a等于多少? 2020-07-30 …
1.下列集合中为空集的是(x2表示x的平方)A.{x|ex=1}B.{0}C.{(x,y)|x2+ 2020-08-01 …
写出下列函数的解析表达式.1.设函数y=f(x),当x<0时,f(x)=0;当x≧0时,f(x)= 2020-08-03 …
函数f(x)=lgx方+1/|x|(x不等于0,x属于R下列命题真命题的序号是1:函数y=f(x)的 2020-12-08 …
设函数f(x)对任意函数x,y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,求f 2020-12-08 …