早教吧作业答案频道 -->数学-->
F(x)=∫(x^3-t^3)f```(t)dt如何求导∫上限是x下限是0
题目详情
F(x)=∫(x^3-t^3)f```(t)dt如何求导 ∫上限是x 下限是0
▼优质解答
答案和解析
先把F(x)拆开,
F(x)=∫[0,x] (x^3-t^3)f '''(t)dt
=x^3 ∫[0,x] f '''(t)dt - ∫[0,x] t^3*f '''(t)dt
对于积分上限函数,其导数就等于将其上限代入被积函数即可,
所以 ∫[0,x] f '''(t)dt的导数为 f '''(x),∫[0,x] t^3*f '''(t)dt的导数为x^3*f '''(x),
于是
F'(x)=3x^2 ∫[0,x] f '''(t)dt + x^3*f '''(x) - x^3*f '''(x)
=3x^2 * [f ''(x)-f ''(0)] + x^3*f '''(x) - x^3*f '''(x)
F(x)=∫[0,x] (x^3-t^3)f '''(t)dt
=x^3 ∫[0,x] f '''(t)dt - ∫[0,x] t^3*f '''(t)dt
对于积分上限函数,其导数就等于将其上限代入被积函数即可,
所以 ∫[0,x] f '''(t)dt的导数为 f '''(x),∫[0,x] t^3*f '''(t)dt的导数为x^3*f '''(x),
于是
F'(x)=3x^2 ∫[0,x] f '''(t)dt + x^3*f '''(x) - x^3*f '''(x)
=3x^2 * [f ''(x)-f ''(0)] + x^3*f '''(x) - x^3*f '''(x)
看了 F(x)=∫(x^3-t^3...的网友还看了以下:
高数二重积分谢谢回答(1)∫(上限0.5.下限0)dx∫(上限x,下限x评分)f(x,y)dy(2 2020-04-27 …
X^Z=Z^Y求dz; ∫ (上-1下-2)dx∫(上1-x下x-1)f(x,y)dy改积分区域级 2020-05-16 …
变限积分问题F(x)=∫(上限x,下限a)(x-t)f(t)dt,则F'(x)=A0Bxf(x)C 2020-05-23 …
问一道考研高等数学里面关于变限积分的问题上限X下限0tf(x-t)dt书上是说设x-t=u然后化成 2020-06-10 …
数学题进来帮下1设函数f(x)={上面是x+1,x≤0下面是a,x>0,在点x=0处连续,则a=2 2020-07-15 …
函数e^x^2的原函数是?(x>0)(A)∫(上限t,下限a)e^x^2dx(B)∫e^t^2dt 2020-07-19 …
设Φ(x)=∫[1/(1+t^2)]dt上限x下线1求Φ'(2)处的导数.lim(X→0)[∫上限 2020-07-31 …
定积分的问题不好意思不会打上下限(上限为x,下限为0)∫x*f(t)dt=x*(上限为x,下限为0 2020-07-31 …
广义积分求解,设f(x)在[1,+∞)上可积,∫f(x)dx(上限+∞下限为1)收敛,且f(x)= 2020-07-31 …
找规律,总共有5个X,第一个X的左边是2,右5上7下3;第二个X,上11下7左3右6;第三个X,左4 2021-02-01 …