早教吧作业答案频道 -->数学-->
求微分方程y′′+(y′)²=1满足y=|x=0=0,y′|x=0=0的特解.
题目详情
求微分方程y′′+(y′)²=1满足y=|x=0=0,y′|x=0=0的特解.
▼优质解答
答案和解析
令z=y'
原方程变为
z'+z²=1
dz/dx=1-z²
dz/(1-z²)=dx
(1/2)[dz/(1-z)+dz/(1+z)]=dx
(1/2)ln|(1+z)/(1-z)|=x+C
代入x=0,z(0)=y'(0)=0
C=0
ln|(1+z)/(1-z)|=2x
(1+z)/(1-z)=e^(2x)
1+z=e^2x-e^2x z
z=(e^2x-1)/(e^2x+1)
y'=(e^2x-1)/(e^2x+1)=1-2/(e^2x +1)
积分
y=C+x-2积分 e^x dx/[e^x(e^2x+1)]
t=e^x,dt=e^xdx
y=C+x-2积分 dt/[t(t^2+1)]
=C+x-2积分 [dt/t-t dt /(t^2+1)]
=C+x-2ln |t|+ln|t^2+1|
=C+x-2x+ln(e^2x +1)
=C-x+ln(e^2x+1)
代入x=0,y(0)=0
C=-ln2
y=-ln2-x+ln(e^(2x)+1)
原方程变为
z'+z²=1
dz/dx=1-z²
dz/(1-z²)=dx
(1/2)[dz/(1-z)+dz/(1+z)]=dx
(1/2)ln|(1+z)/(1-z)|=x+C
代入x=0,z(0)=y'(0)=0
C=0
ln|(1+z)/(1-z)|=2x
(1+z)/(1-z)=e^(2x)
1+z=e^2x-e^2x z
z=(e^2x-1)/(e^2x+1)
y'=(e^2x-1)/(e^2x+1)=1-2/(e^2x +1)
积分
y=C+x-2积分 e^x dx/[e^x(e^2x+1)]
t=e^x,dt=e^xdx
y=C+x-2积分 dt/[t(t^2+1)]
=C+x-2积分 [dt/t-t dt /(t^2+1)]
=C+x-2ln |t|+ln|t^2+1|
=C+x-2x+ln(e^2x +1)
=C-x+ln(e^2x+1)
代入x=0,y(0)=0
C=-ln2
y=-ln2-x+ln(e^(2x)+1)
看了 求微分方程y′′+(y′)²...的网友还看了以下:
下列集合A到集合B的对应关系中,不能确定y是x的函数的是1)A={X|X∈Z}B={y|y∈Z},对 2020-03-30 …
根据下列各式,求x:y的值:(1)3/x=4/y(2)x-y/y=2/3(3)x+y/5=x/2( 2020-07-18 …
已知函数y=y¹-y².求y与x之间的函数关系式已知函数y=y¹-y²,且y¹与x²分子一成反比例 2020-07-18 …
判断下列对应是否为函数1)x→x的算术平方根,x∈A,A为正整数集,B=R2)x→y,y²=x,x 2020-07-20 …
doublex=0;doubley=0;doublexd=-0.3146;doubleyd=0.2 2020-07-23 …
x(y+z-x)=39-2(x*x)1.解方程组y(z+x-y)=52-2(y*y)z(x+y-z) 2020-10-30 …
用隐函数求导法则对x^y=y^x求导为什么会得出x^2=y^2x^y=y^x用隐函数求导法则yx^( 2020-10-31 …
已知(y+z-x)/(x+y+z)=(z+x-y)/(y+z-x)=(x+y-z)/(z+x-y)= 2020-11-01 …
为什么方法不一样答案不一样求xy=e^(x+y)的导数方法一两边取对数lnx+lny=x+y求导(1 2020-11-06 …
1、下列各式的变号中,正确的是A、x-y/y-x=y-x/x-yB、x-y/(y-x)²=y-x/( 2021-01-23 …