早教吧作业答案频道 -->数学-->
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,f'(a)×f'(b)>0,证明:存在c,使得f''(c)=f(c)
题目详情
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,
f'(a)×f'(b)>0,证明:存在c,使得f''(c)=f(c)
f'(a)×f'(b)>0,证明:存在c,使得f''(c)=f(c)
▼优质解答
答案和解析
不妨设f'(a) > 0, 由f'(x)可导故连续, f’(x)在a的一个邻域内 > 0.
f(x)在a的一个邻域内严格增, 在其中有f(x) > f(a) = 0.
同理, 在b的一个邻域内有f(x) < f(b) = 0.
而f(x)连续, 由介值定理, 存在r∈(a,b), 使f(r) = 0.
考虑g(x) = f(x)·e^(-x).
由g(x)在[a,r]连续, 在(a,r)可导, g(a) = g(r) = 0.
由罗尔定理, 存在s∈(a,r), 使g'(s) = 0.
有(f'(s)-f(s))·e^(-s) = 0, 即有f'(s)-f(s) = 0.
同理, 存在t∈(r,b), 使f'(t)-f(t) = 0.
考虑h(x) = (f'(x)-f(x))·e^x.
由h(x)在[s,t]连续, 在(s,t)可导, h(s) = h(t) = 0.
由罗尔定理, 存在c∈(s,t), 使h'(c) = 0.
有(f"(c)-f'(c))·e^c = 0, 故f"(c) = f(c).
方法不一定是最好的, 不过应该还可以接受吧.
f(x)在a的一个邻域内严格增, 在其中有f(x) > f(a) = 0.
同理, 在b的一个邻域内有f(x) < f(b) = 0.
而f(x)连续, 由介值定理, 存在r∈(a,b), 使f(r) = 0.
考虑g(x) = f(x)·e^(-x).
由g(x)在[a,r]连续, 在(a,r)可导, g(a) = g(r) = 0.
由罗尔定理, 存在s∈(a,r), 使g'(s) = 0.
有(f'(s)-f(s))·e^(-s) = 0, 即有f'(s)-f(s) = 0.
同理, 存在t∈(r,b), 使f'(t)-f(t) = 0.
考虑h(x) = (f'(x)-f(x))·e^x.
由h(x)在[s,t]连续, 在(s,t)可导, h(s) = h(t) = 0.
由罗尔定理, 存在c∈(s,t), 使h'(c) = 0.
有(f"(c)-f'(c))·e^c = 0, 故f"(c) = f(c).
方法不一定是最好的, 不过应该还可以接受吧.
看了 设f(x)在[a,b]上一阶...的网友还看了以下:
设函数f(x)在x=a处二阶可导,又limf'(x)/(x-a)=-1,则()A.x=a是f(x设函 2020-03-31 …
让我搞懂的可以追加分F(x)={f(x),x≤0,F(x)=ax²+bx+c,x>0}这是一个分段 2020-05-20 …
f(x)在[a,b]连续,在(a,b)二阶连续可导,证明存在c,使f(a)+f(b)-2f((a+ 2020-07-25 …
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,f'(a)×f 2020-07-31 …
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,f'(a)>f 2020-07-31 …
二阶导数问题f(x)在c点导数为f'(c),若f'(c)=0,f''(c)≠0,则c点为f(x)极 2020-07-31 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
1)设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明:在(a,b)内存在一点ξ,使f'( 2020-12-28 …
设f(x)在[a,b]连续,在(a,b)二阶可导,连接点A(a,f(a))和B(b,f(b))的直线 2020-12-28 …
关于电磁波,下列说法正确的是A.电磁波的传播速度比光速小B.电磁波在真空中不能传播C.微波、无线电波 2021-01-24 …