早教吧作业答案频道 -->数学-->
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,f'(a)×f'(b)>0,证明:存在c,使得f''(c)=f(c)
题目详情
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,
f'(a)×f'(b)>0,证明:存在c,使得f''(c)=f(c)
f'(a)×f'(b)>0,证明:存在c,使得f''(c)=f(c)
▼优质解答
答案和解析
不妨设f'(a) > 0, 由f'(x)可导故连续, f’(x)在a的一个邻域内 > 0.
f(x)在a的一个邻域内严格增, 在其中有f(x) > f(a) = 0.
同理, 在b的一个邻域内有f(x) < f(b) = 0.
而f(x)连续, 由介值定理, 存在r∈(a,b), 使f(r) = 0.
考虑g(x) = f(x)·e^(-x).
由g(x)在[a,r]连续, 在(a,r)可导, g(a) = g(r) = 0.
由罗尔定理, 存在s∈(a,r), 使g'(s) = 0.
有(f'(s)-f(s))·e^(-s) = 0, 即有f'(s)-f(s) = 0.
同理, 存在t∈(r,b), 使f'(t)-f(t) = 0.
考虑h(x) = (f'(x)-f(x))·e^x.
由h(x)在[s,t]连续, 在(s,t)可导, h(s) = h(t) = 0.
由罗尔定理, 存在c∈(s,t), 使h'(c) = 0.
有(f"(c)-f'(c))·e^c = 0, 故f"(c) = f(c).
方法不一定是最好的, 不过应该还可以接受吧.
f(x)在a的一个邻域内严格增, 在其中有f(x) > f(a) = 0.
同理, 在b的一个邻域内有f(x) < f(b) = 0.
而f(x)连续, 由介值定理, 存在r∈(a,b), 使f(r) = 0.
考虑g(x) = f(x)·e^(-x).
由g(x)在[a,r]连续, 在(a,r)可导, g(a) = g(r) = 0.
由罗尔定理, 存在s∈(a,r), 使g'(s) = 0.
有(f'(s)-f(s))·e^(-s) = 0, 即有f'(s)-f(s) = 0.
同理, 存在t∈(r,b), 使f'(t)-f(t) = 0.
考虑h(x) = (f'(x)-f(x))·e^x.
由h(x)在[s,t]连续, 在(s,t)可导, h(s) = h(t) = 0.
由罗尔定理, 存在c∈(s,t), 使h'(c) = 0.
有(f"(c)-f'(c))·e^c = 0, 故f"(c) = f(c).
方法不一定是最好的, 不过应该还可以接受吧.
看了 设f(x)在[a,b]上一阶...的网友还看了以下:
:已知 a2 +ab+b2 =3 且a、b为实数设k= a2 -ab+b2 的最大值为m ,最小值 2020-04-05 …
概率题急求解1设A,B为随机事件且P(A)=0.7,P(A-B)=0.3,求P(A非B非).2设A 2020-04-12 …
设f(x)在[a,b]上连续,在(a,b)内可导,且当x∈(a,b)时,f(x)≠0.若f(a)= 2020-05-14 …
设集合M满足条件,若对任意实数a属于M,则f(a)=a/(2a+1)属于M,且f(f(a))属于M 2020-06-03 …
X,Y为具有二阶矩的随机变量,且设Q(a,b)=E(Y-(a+bX))^2,求a,b使Q达到最小值 2020-06-12 …
设在a的某邻域内有f(x)有连续的二阶导数,且f'(a)不等于0,求w=(x->a)lim{[[1 2020-06-16 …
设a,b,c∈R,证明a^2acc^23b(abc)≥0,并指出等号何时成立问题补充:证明:不妨设 2020-06-23 …
设a,b,c为实数,且满足a-b+c>0,a+b+c>0,则下列结论正确的是?设a、b、c为实数, 2020-07-09 …
设定圆(x+根号3)^2+y^2=16,动圆N过点F(根号3,0)且与圆M相切,记圆心N的轨迹为E 2020-07-26 …
方程x^2+px+q=0的两实根为a,b,且设I1=a+b,I2=a^2+b^2,I3=a^3+b^ 2020-12-27 …