早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知正三棱锥P-ABC,点P,A,B,C都在半径为3的球面上,若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为

题目详情
已知正三棱锥P-ABC,点P,A,B,C都在半径为3的球面上,若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为
▼优质解答
答案和解析
已知正三棱锥P-ABC,点P,A,B,C都在半径为3的球面上,若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为
解析:设球心到底面距离为h
则正三棱锥的高为3+h,底面半径=√(3^2-h^2),底面边长=√[3(3^2-h^2)]
∵PA,PB,PC两两相互垂直
PA=√[2*3(3^2-h^2)]
2*3(3^2-h^2)=9-h^2+(3+h)^2==>5(9-h^2)=(3+h)^2==>h^2+h-6=0==>h=2,h=-3(舍)
∴球心到底面距离为2