早教吧作业答案频道 -->数学-->
如图在三棱锥ABC-A1B1C1中,AB=根号2a,BC=CA=AA1=a,A1O⊥面ABC,点O在AC上且为AC中点,求此三棱柱的侧面积
题目详情
如图在三棱锥ABC-A1B1C1中,AB=根号2a,BC=CA=AA1=a,A1O⊥面ABC,点O在AC上且为AC中点,求此三棱柱的侧面积
▼优质解答
答案和解析
2011-07-06 20:16 提问者采纳因为A1在底面ABC内的
O在AC中点,则有AO=AC=a/2,A1O⊥面ABC,A1O⊥AC
所以△AA1O为直角三角形
根据勾股定理,可得A1O=√(AA1^2-AO^2)=√[a^2-(a/2)^2]=(√3/2)a,
四边形AA1C1C的面积是AC*A1O=a*(√3/2)a=(√3/2)a^2
过点O作AB的垂线OE,连结A1E,由题意可知△ABC是等腰Rt△,同理△AOE和△AA1E都是Rt△,
AE=OE=√2/2*AO=(√2/4)a
A1A⊥AB,A1E=√(A1A^2-AE^2)=√[a^2-(a√2/4)^2]=a(√14/4)
四边形AA1B1B的面积是AB*A1E=√2a*a(√14/4)=(√7/2)a^2
又A1O⊥BC,A1O⊥AC,△ABC是等腰Rt△,BC⊥AC
所以BC⊥面ACC1A1,即有BC⊥CC1
四边形BCC1B1的面积是BC*CC1=a*a=a^2
所以
的侧面积等于三个四边形的面积和,即
a^2+(√7/2)a^2+(√3/2)a^2=[(2+√3+√7)/2]*a^2
O在AC中点,则有AO=AC=a/2,A1O⊥面ABC,A1O⊥AC
所以△AA1O为直角三角形
根据勾股定理,可得A1O=√(AA1^2-AO^2)=√[a^2-(a/2)^2]=(√3/2)a,
四边形AA1C1C的面积是AC*A1O=a*(√3/2)a=(√3/2)a^2
过点O作AB的垂线OE,连结A1E,由题意可知△ABC是等腰Rt△,同理△AOE和△AA1E都是Rt△,
AE=OE=√2/2*AO=(√2/4)a
A1A⊥AB,A1E=√(A1A^2-AE^2)=√[a^2-(a√2/4)^2]=a(√14/4)
四边形AA1B1B的面积是AB*A1E=√2a*a(√14/4)=(√7/2)a^2
又A1O⊥BC,A1O⊥AC,△ABC是等腰Rt△,BC⊥AC
所以BC⊥面ACC1A1,即有BC⊥CC1
四边形BCC1B1的面积是BC*CC1=a*a=a^2
所以
的侧面积等于三个四边形的面积和,即
a^2+(√7/2)a^2+(√3/2)a^2=[(2+√3+√7)/2]*a^2
看了 如图在三棱锥ABC-A1B1...的网友还看了以下:
立体几何11、平行六面体ABCD-A1B1C1D1各棱长都等于4,体积为V,在AA1上取AP=1, 2020-05-13 …
在棱长为一的正方体ABCD-A,B,C,D,中,E是BD的中点,G在棱CD上且CG=1/4DC,F 2020-05-16 …
在棱长为1的正方体abcd-a1b1c1d1中,e是bd的中点,g在棱cd上且cg=1/4dc,f 2020-05-16 …
如图,在直三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB 2020-07-31 …
如图,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,侧棱与底面所成的角为α(0 2020-07-31 …
已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,侧棱与底面所成的角为α(0°<α 2020-07-31 …
如图,以棱长为a的正方体的三条棱为坐标轴,建立空间直角坐标系O-xyz,点P在正方体的对角线AB上, 2020-11-01 …
已知四棱锥P-ABCD中,底面ABCD为正方形,PC⊥平面ABCD,AB=1,PC=2,E为侧棱PC 2020-12-23 …
如图,在三棱柱ABC-A′B'C'中,△ABC是边长为2的等边三角形,AA'⊥底面ABC且AA'=4 2020-12-25 …
关于棱柱的选择题关于棱柱下列说法正确的有A.棱柱侧面的形状可能是一个三角形B.棱柱的每条棱长都相等C 2020-12-25 …