早教吧作业答案频道 -->数学-->
在棱长为1的正方体abcd-a1b1c1d1中,e是bd的中点,g在棱cd上且cg=1/4dc,f为c1g...在棱长为1的正方体abcd-a1b1c1d1中,e是bd的中点,g在棱cd上且cg=1/4dc,f为c1g的中点,求ef的长
题目详情
在棱长为1的正方体abcd-a1b1c1d1中,e是bd的中点,g在棱cd上且cg=1/4dc,f为c1g...
在棱长为1的正方体abcd-a1b1c1d1中,e是bd的中点,g在棱cd上且cg=1/4dc,f为c1g的中点,求ef的长
在棱长为1的正方体abcd-a1b1c1d1中,e是bd的中点,g在棱cd上且cg=1/4dc,f为c1g的中点,求ef的长
▼优质解答
答案和解析
【分析】要使得D1E⊥平面AB1F,只需D1E⊥AB1,D1E⊥AF,
而D1E在面BAA1B1上的投影AB⊥AB1,故可以解决D1E⊥AB1.
而D1E⊥AF可以通过AF⊥EF上解决.这样就可以将立体的问题转化为求解平面几何的问题,利用平面几何的知识容易得出点F为CD的中点
【解决】
点F为CD的中点.
证明:
∵D1E在面BAA1B1上的投影AB⊥AB1 ∴AB1⊥D1E
∵DF=EC=1/2AD,AD=DC,∠D=∠C
∴△DEC全等于△ADF
∴∠EDC=∠FAD,∴∠AFD+∠FDE=90°
设DE与AF交于点O,则∠DOF=90°,即AF⊥DE
故D1E⊥面AFB1
而D1E在面BAA1B1上的投影AB⊥AB1,故可以解决D1E⊥AB1.
而D1E⊥AF可以通过AF⊥EF上解决.这样就可以将立体的问题转化为求解平面几何的问题,利用平面几何的知识容易得出点F为CD的中点
【解决】
点F为CD的中点.
证明:
∵D1E在面BAA1B1上的投影AB⊥AB1 ∴AB1⊥D1E
∵DF=EC=1/2AD,AD=DC,∠D=∠C
∴△DEC全等于△ADF
∴∠EDC=∠FAD,∴∠AFD+∠FDE=90°
设DE与AF交于点O,则∠DOF=90°,即AF⊥DE
故D1E⊥面AFB1
看了 在棱长为1的正方体abcd-...的网友还看了以下:
提先谢谢了,越快越好1.求下列函数的值:(1)已知f(x)=|x-2|分之x+1,求f(0),f( 2020-04-27 …
1.函数f(x)=3x²—5x+2,求f(负根号下2),f(-a),f(a+3),f(a)+f(3 2020-05-22 …
如题函数f(x)对任意实数x满足条件f(x+1)=1/f(x)若f(1)=-5,则f[f(5)]= 2020-06-06 …
大家帮我看看这个函数的定义域是什么,f(x)=[(x^2)-1]/x-1 的定义域到底是以下哪一个 2020-06-27 …
a*b=a^2-ab(ab)已知f(x)=(2x-1)*(x-1)f(x)=m有三个不同的根x1, 2020-07-11 …
(1/2+1/3+1/4+...1/2013)X(1+1/2+1/3+1/4+...1/2012) 2020-07-14 …
N个一样的球,放到M个有编号的箱子里,有多少种放法?举例N=3,M=2,有4种方法:3,0,;2, 2020-07-14 …
一、我们知道1/1×2=1/1-1/2=1/2,1/2×3=1/2-1/3=1/6验证:1/3×4 2020-07-17 …
寻找规律解数学题1/1*2=1-1/22/2*3=1/2-1/31/3*4=1/3-1/4……计算 2020-07-22 …
由下列各式:1>1/2,1+1/2+1/3>1有下列各式:1>1/2;1+1/2+1/3>1;1+1 2020-10-30 …