早教吧作业答案频道 -->数学-->
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2,F为CD的中点.(1)求证:AF⊥平面CDE;(2)求证:AF∥平面BCE;(3)求四棱锥C-ABED的体积.
题目详情

(1)求证:AF⊥平面CDE;
(2)求证:AF∥平面BCE;
(3)求四棱锥C-ABED的体积.
▼优质解答
答案和解析
(1)证明:∵F为等边三角形CD边上的中点,
∴AF⊥CD,
∵DE⊥平面ACD,AF⊂平面ACD,
∴AF⊥DE,
又CD∩DE=D,∴AF⊥平面CDE.
(2)证明:取CE的中点G,连FG、BG.∵F为CD的中点,
∴GF∥DE且GF=
DE.
∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE,∴GF∥AB.
又AB=
DE,∴GF=AB.
∴四边形GFAB为平行四边形,则AF∥BG.
∵AF⊄平面BCE,BG⊂平面BCE,∴AF∥平面BCE.
(3)取AD中点M,连接CM,
∵△ACD为等边三角形,则CM⊥AD,
∵DE⊥平面ACD,且DE⊂平面ABED,
∴平面ACD⊥平面ABED,
又平面ACD∩平面ABED=AD,∴CM⊥平面ABED,
∴CM为四棱锥C-ADEB的高,
∴V=
CM•SABED=
AF•SABED=
.

∴AF⊥CD,
∵DE⊥平面ACD,AF⊂平面ACD,
∴AF⊥DE,
又CD∩DE=D,∴AF⊥平面CDE.
(2)证明:取CE的中点G,连FG、BG.∵F为CD的中点,
∴GF∥DE且GF=
1 |
2 |
∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE,∴GF∥AB.
又AB=
1 |
2 |
∴四边形GFAB为平行四边形,则AF∥BG.
∵AF⊄平面BCE,BG⊂平面BCE,∴AF∥平面BCE.
(3)取AD中点M,连接CM,
∵△ACD为等边三角形,则CM⊥AD,
∵DE⊥平面ACD,且DE⊂平面ABED,
∴平面ACD⊥平面ABED,
又平面ACD∩平面ABED=AD,∴CM⊥平面ABED,
∴CM为四棱锥C-ADEB的高,
∴V=
1 |
3 |
1 |
3 |
3 |
看了 如图,已知AB⊥平面ACD,...的网友还看了以下:
读下图,据此回答1-3题:1.四幅图中位在亚洲与北美洲边界的图是:A.a图B.b图C.c图D.d图 2020-05-02 …
四幅图中有一幅是冬至日的记录图,该图是()A.A图B.B图C.C图D.D图 2020-05-02 …
四幅图中有一幅是冬至日的记录图,该图是()A.A图B.B图C.C图D.D图 2020-05-02 …
上图A~D四个半球图中,代表东半球的是()A、A图B、B图C、C图D、D图 2020-05-02 …
菏泽的小明善于观察,一年中,他在不同时期观察并记录了当地正午时刻教室内的光照情况(如图所示),四幅 2020-05-02 …
读“海口、吐鲁番、漠河、五道梁”四地气温及降水量变化图,完成1~3题1.上面四幅图中,代表漠河的是 2020-05-02 …
下图所示为12月22日A、B、C、D四地昼夜长短示意图,阴影代表黑夜,据图回答1—3题。1、水平运 2020-05-02 …
读下图,回答下列各题。1.上面四幅图中,表示实际范围最大的是A.a图B.b图C.c图D.d图2.上 2020-05-02 …
读下图,回答六6-2六题A~D四8半球图u,最能反映出南极洲大陆轮廓图象的是()A.A图B.B图C 2020-07-05 …
通过棱镜的光束,会向棱镜的( )方向发生偏折。A.顶角B.主切面C.底D.棱 2020-08-22 …