早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•保定一模)已知极坐标系与直角坐标系长度单位相同,且以原点O为极点,x轴的非负半轴为极轴.设直线C1:x=1+tcosαy=tsinα(t为参数),曲线C2:ρ=1.(Ⅰ)当α=π3时,求曲线C1的

题目详情
(2014•保定一模)已知极坐标系与直角坐标系长度单位相同,且以原点O为极点,x轴的非负半轴为极轴.设直线C1
x=1+tcosα
y=tsinα
(t为参数),曲线C2:ρ=1.
(Ⅰ)当α=
π
3
时,求曲线C1的极坐标方程及极径ρ(ρ>0)的最小值;
(Ⅱ)求曲线C1与C2两交点的直角坐标(用α表示).
▼优质解答
答案和解析
(Ⅰ)当α=
π
3
时,C1的普通方程为y=
3
(x−1),
将y=ρsinθ,x=ρcosθ,代入上式得ρsinθ−
3
ρcosθ=−
3

故C1的极坐标方程为ρcos(θ+
π
6
)=
3
2
. 
∵ρ>0,∴ρ=
3
2
cos(θ+
π
6
)
,且0<cos(θ+
π
6
)≤1,
∴当cos(θ+
π
6
)=1时,得θ+
π
6
=2kπ,k∈Z,
取k=1,得θ=
11π
6
时,极径ρ有最小值
作业帮用户 2017-09-29
问题解析
对第(Ⅰ)问,先将直线C1的参数方程化为普通方程,再化为极坐标方程,接着写出极径ρ关于θ的表达式,可得ρ的最小值;
对第(Ⅱ)问,将C2的方程化为直角坐标方程,联立C1的普通方程,把α看作常数,解此方程组,即得交点坐标.
名师点评
本题考点:
参数方程化成普通方程.
考点点评:
1.本题考查了参数方程,直角坐标方程,极坐标方程,普通方程之间的互化.
(1)参数方程化普通方程时,关键是消参,常见消参方式有:代入法,等式两边同时平方,两式相加、减,两式相乘、除等,应注意方程在变形过程中的等价性;
(2)在进行极坐标方程与直角坐标方程之间的互化时,应掌握一些常见的构造或凑配技巧(如方程两边同时乘以ρ,方程两边同时平方等).关键是记住并会运用公式:
3
2
x=ρcosθ
y=ρsinθ
ρ2=x2+y2(或ρ=
x2+y2
)
tanθ=
y
x
(x≠0)
,一般取θ∈[0,2π),ρ的范围可根据具体情况而定.
2.在处理参数方程或极坐标方程的问题时,一般先将这些方程化为普通方程或直角坐标方程,再进行其他相关运算.
我是二维码 扫描下载二维码