早教吧 育儿知识 作业答案 考试题库 百科 知识分享

计算∫L(2a-y)dx-(a-y)dy,其中L为摆线x=a(t-sint),y=a(1-cost)从点O(0,0)到点B(2πa,0).

题目详情
计算∫L(2a-y)dx-(a-y)dy,其中L为摆线x=a(t-sint),y=a(1-cost)从点O(0,0)到点B(2πa,0).
▼优质解答
答案和解析
由题意,t:0→2π,因此
L(2a-y)dx-(a-y)dy=
0
[(2a-a(1-cost))a(1-cost)-(a-a(1-cost))(asint)]dt
=
0
[a2(1-cos2t)-a2sintcost]dt
=a2
0
(sin2t-sintcost)dt
=a2[
1
2
t-
1
4
sin2t-
1
2
sin2t
]
0

=πa2