早教吧作业答案频道 -->其他-->
已知椭圆C:x2a2+y2b2=1(a>b>0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x+4y+6=0与以椭圆已知椭圆C:x2a2+y2b2=1(a>b>0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3
题目详情
已知椭圆C:x2a2+y2b2=1(a>b>0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x+4y+6=0与以椭圆
已知椭圆C:
+
=1(a>b>0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x+4y+6=0与以椭圆C的上顶点为圆心,以椭圆C的长半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)椭圆C与x轴负半轴交于点A,过点A的直线AM、AN分别与椭圆C交于M、N两点,kAM、kAN分别为直线AM、AN的斜率,kAM?kAN=-
,求证:直线MN过定点,并求出该定点坐标;
(3)在(2)的条件下,求△AMN面积的最大值.
已知椭圆C:
x2 |
a2 |
y2 |
b2 |
(1)求椭圆C的方程;
(2)椭圆C与x轴负半轴交于点A,过点A的直线AM、AN分别与椭圆C交于M、N两点,kAM、kAN分别为直线AM、AN的斜率,kAM?kAN=-
3 |
4 |
(3)在(2)的条件下,求△AMN面积的最大值.
▼优质解答
答案和解析
(1)由于短轴的顶点与右焦点的距离为a,
则由短轴的两个顶点与右焦点的连线构成等边三角形,则a=2b,
又直线3x+4y+6=0与以椭圆C的上顶点为圆心,以椭圆C的长半轴长为半径的圆相切,
则d=
=a,即有5a=4b+6,
解得,a=2,b=1.
则椭圆方程为:
+y2=1;
(2)证明:设直线MN的方程为y=kx+t,M、N坐标分别为M(x1,y1)、N(x2,y2),
由
?(1+4k2)x2+8ktx+4t2-4=0.
判别式为64k2t2-4(1+4k2)(4t2-4)>0,
∴x1+x2=-
,x1x2=
,
∵kAM=
,kAN=
,
∴kAM?kAN=
=
=-
,
将韦达定理代入,并整理得
=-
,化简得,t2-3kt+2k2=0,
即有t=k或t=2k,则直线MN的方程为y=k(x+1)或y=k(x+2),
由于A(-2,0),则直线MN恒过定点Q(-1,0);
(3)△AMN面积为S=
|AQ|?|y1-y2|,
设直线MN:x=my-1,联立椭圆方程,得到(4+m2)y2-2my-3=0,
则y1+y2=
,y1y2=
,
则S=
=
=
=
令
=u(u≥
),则u+
在[
则由短轴的两个顶点与右焦点的连线构成等边三角形,则a=2b,
又直线3x+4y+6=0与以椭圆C的上顶点为圆心,以椭圆C的长半轴长为半径的圆相切,
则d=
|0+4b+6| | ||
|
解得,a=2,b=1.
则椭圆方程为:
x2 |
4 |
(2)证明:设直线MN的方程为y=kx+t,M、N坐标分别为M(x1,y1)、N(x2,y2),
由
|
判别式为64k2t2-4(1+4k2)(4t2-4)>0,
∴x1+x2=-
8kt |
1+4k2 |
4t2?4 |
1+4k2 |
∵kAM=
y1 |
x1+2 |
y2 |
x2+2 |
∴kAM?kAN=
(kx1+t)(kx2+t) |
(x1+2)(x2+2) |
k2x1x2+kt(x1+x2)+t2 |
x1x2+2(x1+x2)+4 |
3 |
4 |
将韦达定理代入,并整理得
t2?4k2 |
4t2?16kt+16k2 |
3 |
4 |
即有t=k或t=2k,则直线MN的方程为y=k(x+1)或y=k(x+2),
由于A(-2,0),则直线MN恒过定点Q(-1,0);
(3)△AMN面积为S=
1 |
2 |
设直线MN:x=my-1,联立椭圆方程,得到(4+m2)y2-2my-3=0,
则y1+y2=
2m |
4+m2 |
?3 |
4+m2 |
则S=
1 |
2 |
(y1+y2)2?4y1y2 |
1 |
2 |
(
|
2
| ||
4+m2 |
2 | ||||||
|
令
3+m2 |
3 |
1 |
u |
作业帮用户
2017-11-02
![]() ![]() |
看了 已知椭圆C:x2a2+y2b...的网友还看了以下:
已知抛物线y=ax^2-2x+c与他的对称轴交于A(1.-4)与Y轴交于点C,与X轴正半轴交于点B 2020-05-16 …
已知抛物线Y等于aX²—2X+c与它的对称轴相较于点A(1,-4),与y轴交与点C,与X轴正半轴交 2020-05-16 …
如图 已知抛物线y=x2+bx+c与x轴交与A.B俩点【A在B点左侧】与y轴交与点C【0,-3】如 2020-05-16 …
若抛物线y=ax²+bx+c与x轴交于AB两点,与y轴交于点C,我们称△ABC为抛物线的奠基三角形 2020-05-16 …
(2008•濮阳)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交 2020-07-22 …
如图所示,圆心C的坐标为(2,2),圆C与x轴和y轴都相切.(1)求圆C的一般方程;(2)求与圆C 2020-07-30 …
如图,抛物线y=-x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y 2020-08-01 …
(2008•濮阳)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于 2020-11-12 …
是初三同胞的就进!问关于二次函数的1道题:(请说明过程)如果抛物线y=ax平方+bx+c与x轴的两个 2020-12-21 …
(2011.浙江)如图,在直角坐标系中,抛物线y=ax^2+bx+c与x轴交与点A(﹣1,0)如图, 2021-01-10 …