早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一道概率论题目设由自动线加工的某种零件内径X(单位:mm)服从正态分布N(r,1),内径小于10或大于12的为次品,销售每件次品要亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关

题目详情
一道概率论题目
设由自动线加工的某种零件内径X(单位:mm)服从正态分布N(r,1),内径小于10或大于12的为次品,销售每件次品要亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:
|-1,X
▼优质解答
答案和解析
利润 L=-1* φ (10- μ )+20*[ φ (12- μ )- φ (10- μ )]-5*[1- φ (12- μ )]=25 φ (12- μ )-21 φ (10- μ )-5
=25 ∫ 1/(2 π )^0.5e^(-0.5x^2) 从 - ∞到 12- μ的积分
-21 ∫ 1/(2 π )^0.5e^(-0.5x^2) 从∞到 10- μ的积分 -5
对上式求导得
L ’ =1/(2 π )^0.5(21e^[0.5(10- μ )^2]-25 e^[0.5(12- μ )^2]
令 L ’ =0 即可以求得μ =10.9
此时销售一个零件的平均利润最大 .