早教吧作业答案频道 -->其他-->
(2007•青浦区二模)如图,⊙A和⊙B是外离的两圆,两圆的连心线分别交⊙A、⊙B于E、F,点P是线段AB上的一动点(点P不与E、F重合),PC切⊙A于点C,PD切⊙B于点D,已知⊙A的半径为2,⊙B的
题目详情
(2007•青浦区二模)如图,⊙A和⊙B是外离的两圆,两圆的连心线分别交⊙A、⊙B于E、F,点P是线段AB上的一动点(点P不与E、F重合),PC切⊙A于点C,P
D切⊙B于点D,已知⊙A的半径为2,⊙B的半径为1,AB=5.
(1)如设线段BP的长为x,线段CP的长为y,求y关于x的函数解析式,并写出函数的定义域;
(2)如果PC=PD,求PB的长;
(3)如果PC=2PD,判断此时直线CP与⊙B的位置关系,证明你的结论.

(1)如设线段BP的长为x,线段CP的长为y,求y关于x的函数解析式,并写出函数的定义域;
(2)如果PC=PD,求PB的长;
(3)如果PC=2PD,判断此时直线CP与⊙B的位置关系,证明你的结论.
▼优质解答
答案和解析
(1)∵PC是圆A的切线,
∴∠ACP=90°(1分)
在Rt△ACP中,AC2+CP2=AP2,
∴4+y2=(5-x)2,
∴y=
(1<x<3);(4分)
(2)∵PC=PD,
∴
=
,
∴x=
(符合要求)
∴PB的长为
;(3分)

(3)∵PC=2PD,
∴
=
=2,∠ACP=∠BDP=90°,
∴△ACP∽△BDP,
∴∠APC=∠BPD,(3分)
过点B作CP的垂线交CP的延长线于H,
∵∠APC=∠BPH,
∴∠BPD=∠BPH,
又∵BD⊥DP,BH⊥PH,
∴BD=BH,(2分)
∴直线CP与圆B相切.(1分)
∴∠ACP=90°(1分)
在Rt△ACP中,AC2+CP2=AP2,
∴4+y2=(5-x)2,
∴y=
x2−10x+21 |
(2)∵PC=PD,
∴
x2−10x+21 |
x2−1 |
∴x=
11 |
5 |
∴PB的长为
11 |
5 |

(3)∵PC=2PD,
∴
PC |
PD |
AC |
BD |
∴△ACP∽△BDP,
∴∠APC=∠BPD,(3分)
过点B作CP的垂线交CP的延长线于H,
∵∠APC=∠BPH,
∴∠BPD=∠BPH,
又∵BD⊥DP,BH⊥PH,
∴BD=BH,(2分)
∴直线CP与圆B相切.(1分)
看了 (2007•青浦区二模)如图...的网友还看了以下:
(2010•南开区二模)设函数f(x)=13x-lnx(x>0),那么函数y=f(x)( )A. 2020-05-13 …
如图所示匀强电场E的区域内,在O点处放置一点电荷+Q,a、b、c、d、e、f为以O点为球心的球面上 2020-06-12 …
(2011•道外区一模)如图所示,在平面直角坐标系中,0为坐标原点,⊙E过点O.与x轴、y轴分别交 2020-06-14 …
某景区的旅游线路如图1所示,其中A为入口,B,C,D为风景点,E为三岔路...某景区的旅游线路如图 2020-06-18 …
设函数f(x)=13x−lnx,(x>0),则下列说法中正确的是()A.f(x)在区间(1e,1) 2020-07-14 …
(2013•河西区一模)如图1,抛物线y=x2+x-4与y轴交于点A,E(0,b)为y轴上一动点, 2020-07-27 …
如图,在梯形ABCD中,AD平行BC,CA平分∠BCD,DE平行AC,交BC的延长线于点E,∠B= 2020-07-30 …
下列实验操作能达到实验目的是()选项实验目的实验操作A除去CO2中的CO点燃B区分铁粉与二氧化锰粉末 2020-11-23 …
高中函数题设函数f(x)=1/3x-lnx(x>0),则y=f(x)A.在区间(1/e,1),(1, 2020-12-26 …
(12分)如图甲所示,场强大小为E、方向竖直向上的匀强电场内存在着一半径为R的圆形区域,O点为该圆形 2020-12-28 …