早教吧作业答案频道 -->其他-->
(2011•道外区一模)如图所示,在平面直角坐标系中,0为坐标原点,⊙E过点O.与x轴、y轴分别交于B、A两点,点E坐标为(-2,23)F为弧A0的中点.点B,D关于F点成中心对称.(1)求点c的
题目详情
(2011•道外区一模)如图所示,在平面直角坐标系中,0为坐标原点,⊙E过点O.与x轴、y轴分别交于B、A两点,点E坐标为(-2,2| 3 |
(1)求点c的坐标;
(2)点P从B点开始在折线段B-A-D上运动:点Q从B点开始在射线B0上运动,两点的运动速度均为2个长度单位每秒,设运动时间为t.△POQ的面积为y,求y与t之间的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,若y=
| 3 |
| 128 |
▼优质解答
答案和解析
(1)过E作EM⊥OA于M,EN⊥OB于N,连接OE,
由勾股定理得:OE=4=AE=BE,
∴AB=8,∠BAO=30°,∠ABO=60°,OB=4,
∵AB是直径,
∴∠AFB=90°=∠BFC,
∵F为弧OA的中点,
∴∠ABF=∠CBF,
在△ABF和△CBF中
,
∴△ABF≌△CBF,
∴AF=CF,∠ACB=∠ABC=60°,BC=AB=8,
∴OC=4,
∴C的坐标是(4,0)
(2)当Q在BO上时,P在AB上,
y=
×OQ×HOQ=
(4-2t)•
t=-
t2+2
t(0<t<2);
当Q在OC上时,P在AB上,
同法可求y=
OQ×HOQ=
×(2t-4)×
t=
由勾股定理得:OE=4=AE=BE,
∴AB=8,∠BAO=30°,∠ABO=60°,OB=4,
∵AB是直径,
∴∠AFB=90°=∠BFC,
∵F为弧OA的中点,
∴∠ABF=∠CBF,
在△ABF和△CBF中
|
∴△ABF≌△CBF,
∴AF=CF,∠ACB=∠ABC=60°,BC=AB=8,
∴OC=4,
∴C的坐标是(4,0)
(2)当Q在BO上时,P在AB上,

y=
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 3 |
| 3 |
当Q在OC上时,P在AB上,

同法可求y=
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
|
看了 (2011•道外区一模)如图...的网友还看了以下:
已知二次函数..已知二次函数y=-1/2x^+(n+1/2)x+n+1,它的图像与x轴交于点A(x 2020-05-13 …
如图,抛物线y=ax²+bx+c经过A(-1,哦),B(3,0),C(0,3)三点,对称轴与抛物线 2020-05-15 …
如图,平行四边形ABCD 的对角线AC与BD相交于点0,直线EF过点0,且与AB、DC分别相交于点 2020-05-16 …
已知抛物线y=ax2+bx+c与y轴相交于点C,与x轴相交于点A(x1,0),B(x2,0)... 2020-05-17 …
抛物线y=ax-3ax+b经过A(-1,0),C(3,-2)两点,与y轴交于点D,与x轴交于另一点 2020-06-03 …
抛物线y=x2+bx+c(b≤0)的图像与x轴交于A,B两点,与y轴交于点C,其中点A的坐标为(- 2020-06-03 …
直线y=kx+号2与根反比例函数y=2根号2/x(x>0)的图象交于点A,与坐标轴分别交于点M、N 2020-06-07 …
抛物线y=x2+bx+c(b小于等于0)的图像与x轴交于A`B两点,与y轴交于C点,其中点A坐标为 2020-06-29 …
已知△ABC的三个顶点的坐标分别是A(0,3)B(-1,0)C(1,0)直线l:y=-kx+2k分别 2021-01-11 …
已知△ABC的三个顶点的坐标分别是A(0,3),B(-1,0),C(1,0)直线L:y=-kx+2k 2021-01-11 …
相关问答