早教吧作业答案频道 -->数学-->
过点Q(-2,√21)作圆C:x^2+y^2=r^2(r>0)的切线,切点为D,且QD=4.(1)求r的值;(2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且l交x轴于点A,交y轴于点B,设OM向量=OA向量+OB向量,求|OM向量|的
题目详情
过点Q(-2,√21)作圆C:x^2+y^2=r^2(r>0)的切线,切点为D,且QD=4.
(1)求r的值;(2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且l交x轴于点A,交y轴于点B,设OM向量=OA向量+OB向量,求|OM向量|的最小值(O为坐标原点).
(1)求r的值;(2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且l交x轴于点A,交y轴于点B,设OM向量=OA向量+OB向量,求|OM向量|的最小值(O为坐标原点).
▼优质解答
答案和解析
第一问:
O为圆C的圆心,连接OQ,△OQD为直角三角形;
OQ=√[2^2+(√21)^2]=5
r=OD=√[OQ^2-QD^2]=3
第二问:
设∠POA=θ,P的坐标为(3*cosθ,3*sinθ)
直线l为:y-3sinθ=-ctanθ(x-3cosθ)
OA=3/cosθ,OB=3/sinθ ; 向量OA=3/cosθ,向量OB=i*3/sinθ
|OM|=|OA+OB|=|3/cosθ+i*3/sinθ|
=√[(3/cosθ)^2+(3/sinθ)^2] ;如果不用复数 i的表示方法,可以直接用向量的三角形法则,两相互垂直的向量和的长度 恰为他们的斜边长度
=√[(3/cosθ)^2+(3/sinθ)^2]
=2√3/sin(2θ)
>=2√3 ;当θ=45°
故最小值为2√3
O为圆C的圆心,连接OQ,△OQD为直角三角形;
OQ=√[2^2+(√21)^2]=5
r=OD=√[OQ^2-QD^2]=3
第二问:
设∠POA=θ,P的坐标为(3*cosθ,3*sinθ)
直线l为:y-3sinθ=-ctanθ(x-3cosθ)
OA=3/cosθ,OB=3/sinθ ; 向量OA=3/cosθ,向量OB=i*3/sinθ
|OM|=|OA+OB|=|3/cosθ+i*3/sinθ|
=√[(3/cosθ)^2+(3/sinθ)^2] ;如果不用复数 i的表示方法,可以直接用向量的三角形法则,两相互垂直的向量和的长度 恰为他们的斜边长度
=√[(3/cosθ)^2+(3/sinθ)^2]
=2√3/sin(2θ)
>=2√3 ;当θ=45°
故最小值为2√3
看了 过点Q(-2,√21)作圆C...的网友还看了以下:
如图,抛物线y=ax2+bx+c(a<0)与x轴相交于A、B两点,与y轴的正半轴相交于点C,对称轴 2020-05-15 …
八上数学一次函数如图,直线l(1)与直线l(2)相交于点A,l(1)与x轴的交点坐标为(-1,0) 2020-06-07 …
已知直线L:(m-1)x+2y+2m=0.(1)求证:直线L过定点P(2)若直线L与x轴负半已知直 2020-07-22 …
如图,已知直线l:y=3x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴 2020-07-26 …
平面直角坐标系xoy中,y轴上有一点A(0,1),在x轴上任取一点P,过点P作PA垂线l(1)若l 2020-07-29 …
如图1,抛物线L:y=ax2+2(a-1)x-4(常数a>0)经过点A(-2,0)和点B(0,-4 2020-07-29 …
(1)一直线l过点P(2,2)且斜率为x-3y-6=0的斜率的一半,求直线l的方程(2)已知直线l 2020-07-30 …
2013•内江)如图,已知直线l:y=根号3x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作 2020-11-06 …
(2013•内江)如图,已知直线l:y=3x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直 2020-11-12 …
1过点P(-1,2)的直线l与x轴和y轴分别交与A,B两点.若点P恰为线段AB的中点,求直线l的斜率 2021-01-10 …