早教吧作业答案频道 -->其他-->
(2008•深圳)如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线;(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=23,求△ACF
题目详情
(2008•深圳)如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线;
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=
| 2 |
| 3 |
▼优质解答
答案和解析
(1)证明:连接BO,(1分)
方法一:∵AB=AD
∴∠D=∠ABD
∵AB=AO
∴∠ABO=∠AOB(2分)
又在△OBD中,∠D+∠DOB+∠ABO+∠ABD=180°
∴∠OBD=90°,即BD⊥BO
∴BD是⊙O的切线;(3分)
方法二:∵AB=AO,BO=AO
∴AB=AO=BO
∴△ABO为等边三角形
∴∠BAO=∠ABO=60°
∵AB=AD
∴∠D=∠ABD
又∠D+∠ABD=∠BAO=60°
∴∠ABD=30°(2分)
∴∠OBD=∠ABD+∠ABO=90°,即BD⊥BO
∴BD是⊙O的切线;
方法三:∵AB=AD=AO
∴点O、B、D在以OD为直径的⊙A上
∴∠OBD=90°,即BD⊥BO
∴BD是⊙O的切线;
(2)∵∠C=∠E,∠CAF=∠EBF
∴△ACF∽△BEF
∵AC是⊙O的直径
∴∠ABC=90°
在Rt△BFA中,cos∠BFA=
=
∴
=(
)2=
又∵S△BEF=8
∴S△ACF=18.
(1)证明:连接BO,(1分)方法一:∵AB=AD
∴∠D=∠ABD
∵AB=AO
∴∠ABO=∠AOB(2分)
又在△OBD中,∠D+∠DOB+∠ABO+∠ABD=180°
∴∠OBD=90°,即BD⊥BO
∴BD是⊙O的切线;(3分)
方法二:∵AB=AO,BO=AO
∴AB=AO=BO
∴△ABO为等边三角形
∴∠BAO=∠ABO=60°
∵AB=AD
∴∠D=∠ABD
又∠D+∠ABD=∠BAO=60°
∴∠ABD=30°(2分)
∴∠OBD=∠ABD+∠ABO=90°,即BD⊥BO
∴BD是⊙O的切线;
方法三:∵AB=AD=AO
∴点O、B、D在以OD为直径的⊙A上
∴∠OBD=90°,即BD⊥BO
∴BD是⊙O的切线;
(2)∵∠C=∠E,∠CAF=∠EBF
∴△ACF∽△BEF
∵AC是⊙O的直径
∴∠ABC=90°
在Rt△BFA中,cos∠BFA=
| BF |
| AF |
| 2 |
| 3 |
∴
| S△BEF |
| S△ACF |
| BF |
| AF |
| 4 |
| 9 |
又∵S△BEF=8
∴S△ACF=18.
看了 (2008•深圳)如图,点D...的网友还看了以下:
a和b都是整数,且a÷b=2…1,下列说法正确的是()A.a是偶数B.a是奇数C.b是偶数D.b是 2020-04-09 …
△ABC三边abc和面积满足S=c2-(a-b)2,且a+b=2△ABC的三边a,b,c和面积S满 2020-04-27 …
已知a,b都是正实数,且a+b=2,求证:a2a+1+b2b+1≥1已知a,b都是正实数,且a+b 2020-05-17 …
已知A={1,2,a},B={1,a的二次方},A∪B={1,2,a},求所有可能的a值已知A={ 2020-06-02 …
某厂每天能生产甲零件a个或乙零件b个且a:b=2:3甲乙两种零件各一个配成一套产品某厂每天能生产甲 2020-06-15 …
用C(A)表示非空集合A中的元素个数,定义A*B=C(A)-C(B),当C(A)≥C(B)C(B) 2020-07-22 …
用C(A)表示非空集合A中的元素个数,定义A*B=C(A)-C(B),当C(A)≥C(B)C(B) 2020-07-22 …
1.将PH=a与PH=b的两种强酸等体积混合,该混合溶液的PH为(已知a>b且a-b≥2)2.将P 2020-07-26 …
已知向量a=(cosa,sina),b=(cosb.sinb),且|a-b|=(2根号5)/51、 2020-07-30 …
已知a、b为正数,且a+b=2,则1/(1+a^2)+1/(1+b^2)=基本不等式的问题已知a、 2020-08-03 …